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Introduction

 Artificial Intelligence
 Computers demonstrate human-level cognition
 Play chess, drive cars, fly planes

 Machine Learning
 Computers learn from their past experience
 Adapt to new environments or tasks
 Recognize faces, recognize speech, filter spam
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How Do We Learn?
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How Do We Learn?

Decision Tree20 Questions

k-Nearest Neighbors,
Case-based learning

Memorize

RegressionGuess that current trend will
continue (stock market, real
estate prices)

Pattern RecognitionPattern matching (faces,
voices, languages)

Reinforcement LearningKeep trying until it works
(riding a bike)

Supervised Learning,
Learning by Demonstration

Observe someone else, then
repeat

MachineHuman
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Inductive Learning from Grazeeb
(Example from Josh Tenenbaum, MIT)

“tufa”
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General Inductive Learning

Hypothesis

Observations Feedback,
more

observations

Refinement

Induction,
generalization Actions,

guesses
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Machine Learning

 Optimize a criterion (reach a goal)
using example data or past experience

 Infer or generalize to new situations

 Statistics: inference from a (small) sample
 Probability: distributions and models
 Computer Science:

 Algorithms: solve the optimization problem efficiently
 Data structures: represent the learned model
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Why use Machine Learning?

 We cannot write the program ourselves
 We don’t have the expertise (circuit design)
 We cannot explain how (speech recognition)
 Problem changes over time (packet routing)
 Need customized solutions (spam filtering)
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Machine Learning in Action

 Face, speech, handwriting recognition
 Pattern recognition

 Spam filtering, terrain navigability (rovers)
 Classification

 Credit risk assessment, weather forecasting,
stock market prediction
 Regression

 Future: Self-driving cars? Translating phones?
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Your First Assignment (part 1)

 Find:
 news article,
 press release, or
 product advertisement
 … about machine learning

 Write 1 paragraph each:
 Summary of the machine learning component
 Your opinion, thoughts, assessment

 Due January 10, midnight
 (submit through CSNS)
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Association Rules

 Market basket analysis
 Basket 1: { apples, banana, chocolate }
 Basket 2: { chips, steak, BBQ sauce }

 P(Y|X): probability of buying Y given that X was
bought
 Example: P(chips | beer) = 0.7
 High probability: association rule
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Classification

 Credit scoring
 Goal: label each

person as
“high risk” or
“low risk”

 Input features:
Income and Savings

 Learned discriminant:
 If Income > θ1 AND Savings > θ2

THEN low-risk ELSE high-risk

[Alpaydin 2004 © The MIT Press]
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Classification: Emotion Recognition

[See movie on website]
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Classification Methods in this course

 k-Nearest Neighbor
 Decision Trees
 Support Vector Machines
 Neural Networks
 Naïve Bayes



1/5/08 CS 461, Winter 2008 15

Regression

 Predict price
of used car (y)

 Input feature:
mileage (x)

 Learned:
y = g (x | θ )

g ( ) model,
θ parameters

y = wx+w0

[Alpaydin 2004 © The MIT Press]



1/5/08 CS 461, Winter 2008 16

Regression: Angle of steering wheel
(2007 DARPA Grand Challenge, MIT)

[See movie on website]
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Regression Methods in this course

 k-Nearest Neighbors
 Support Vector Machines
 Neural Networks
 Bayes Estimator
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Unsupervised Learning

 No labels or feedback
 Learn trends, patterns

 Applications
 Customer segmentation: e.g., targeted mailings
 Image compression
 Image segmentation: find objects

 This course
 k-means and EM clustering
 Hierarchical clustering



1/5/08 CS 461, Winter 2008 19

Reinforcement Learning

 Learn a policy: sequence of actions
 Delayed reward

 Applications
 Game playing
 Balancing a pole
 Solving a maze

 This course
 Temporal difference learning
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What you should know

 What is inductive learning?
 Why/when do we use machine learning?
 Some learning paradigms

 Association rules
 Classification
 Regression
 Clustering
 Reinforcement Learning
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Supervised Learning

Chapter 2

Slides adapted from Alpaydin and Dietterich
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Supervised Learning

 Goal: given <input x, output g(x)> pairs,
learn a good approximation to g
 Minimize number of errors on new x’s

 Input: N labeled examples
 Representation: descriptive features

 These define the “feature space”

 Learning a concept C from examples
 Family car (vs. sports cars, etc.)
 “A” student (vs. all other students)
 Blockbuster movie (vs. all other movies)

 (Also: classification, regression…)
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Supervised Learning: Examples

 Handwriting Recognition
 Input: data from pen motion
 Output: letter of the alphabet

 Disease Diagnosis
 Input: patient data (symptoms, lab test results)
 Output: disease (or recommended therapy)

 Face Recognition
 Input: bitmap picture of person’s face
 Output: person’s name

 Spam Filtering
 Input: email message
 Output: “spam” or “not spam”

[Examples from Tom Dietterich]
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Car Feature Space and Data Set
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[Alpaydin 2004 © The MIT Press]
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Family Car Concept C

( ) ( )2121   power engine   AND  price eepp !!!!

[Alpaydin 2004 © The MIT Press]
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Hypothesis Space H

 Includes all possible concepts of a certain form
 All rectangles in the feature space
 All polygons
 All circles
 All ellipses
 …

 Parameters define a specific hypothesis from H
 Rectangle: 2 params per feature (min and max)
 Polygon: f params per vertex (at least 3 vertices)
 (Hyper-)Circle: f params (center) plus 1 (radius)
 (Hyper-)Ellipse: f params (center) plus f (axes)
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Hypothesis h
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Version space: h consistent with X

most specific hypothesis, S

most general hypothesis, G

h ∈ H, between S and G,
are consistent with X 
(no errors)

They make up the 
version space

(Mitchell, 1997)

[Alpaydin 2004 © The MIT Press]
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Learning Multiple Classes
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Regression: predict real value (with noise)

[Alpaydin 2004 © The MIT Press]
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Issues in Supervised Learning

1. Representation: which features to use?

2. Model Selection: complexity, noise, bias

3. Evaluation: how well does it perform?
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What you should know

 What is supervised learning?
 Create model by optimizing loss function
 Examples of supervised learning problems

 Features / representation, feature space
 Hypothesis space
 Version space
 Classification with multiple classes
 Regression
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Instance-Based Learning

Chapter 8
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Chapter 8: Nonparametric Methods

 “Nonparametric methods”: ?
 No explicit “model” of the concept being learned
 Key: keep all the data (memorize)
 = “lazy” or “memory-based” or “instance-based” or “case-

based” learning

 Parametric methods:
 Concept model is specified with one or more

parameters
 Key: keep a compact model, throw away individual

data points
 E.g., a Gaussian distribution; params = mean, std dev
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Instance-Based Learning

 Build a database of previous observations
 To make a prediction for a new item x’,

find the most similar database item x and
use its output f(x) for f(x’)

 Provides a local approximation to target
function or concept

 You need:
1. A distance metric (to determine similarity)
2. Number of neighbors to consult
3. Method for combining neighbors’ outputs

(neighbor)

[Based on Andrew Moore’s IBL tutorial]
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1-Nearest Neighbor

1. A distance metric: Euclidean
2. Number of neighbors to consult: 1
3. Combining neighbors’ outputs: N/A

 Equivalent to memorizing everything you’ve
ever seen and reporting the most similar result

[Based on Andrew Moore’s IBL tutorial]
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In Feature Space…

 We can draw the 1-nearest-neighbor region for
each item: a Voronoi diagram

 http://hirak99.googlepages.com/voronoi
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1-NN Algorithm

 Given training data (x1, y1) … (xn, yn),
determine ynew for xnew

1. Find x’ most similar to xnew using Euclidean dist
2. Assign ynew = y’

 Works for classification or regression

[Based on Jerry Zhu’s KNN slides]
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Drawbacks to 1-NN

 1-NN fits the data exactly, including any noise

 May not generalize well to new data

Off by just a little!
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k-Nearest Neighbors

1. A distance metric: Euclidean
2. Number of neighbors to consult: k
3. Combining neighbors’ outputs:

 Classification
 Majority vote
 Weighted majority vote:

nearer have more influence

 Regression
 Average (real-valued)
 Weighted average:

nearer have more influence

 Result: Smoother, more generalizable result

[Based on Andrew Moore’s IBL tutorial]
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Choosing k

 K is a parameter of the k-NN algorithm
 This does not make it “parametric”.  Confusing!

 Recall: set parameters using validation data set
 Not the training set (overfitting)
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Computational Complexity (cost)

 How expensive is it to perform k-NN on a new
instance?
 O(n) to find the nearest neighbor
 The more you know, the longer it takes to make a

decision!
 Can be reduced to O(log n) using kd-trees
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Summary of k-Nearest Neighbors

 Pros
 k-NN is simple! (to understand, implement)

 You’ll get to try it out in Homework 1!

 Often used as a baseline for other algorithms
 “Training” is fast: just add new item to database

 Cons
 Most work done at query time: may be expensive
 Must store O(n) data for later queries
 Performance is sensitive to choice of distance metric

 And normalization of feature values
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What you should know

 Parametric vs. nonparametric methods
 Instance-based learning
 1-NN, k-NN

 k-NN classification and regression
 How to choose k?

 Pros and cons of nearest-neighbor approaches
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Homework 1

Due Jan. 10, 2008
Midnight
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Three parts

1. Find a newsworthy machine learning product or
discovery online; write 2 paragraphs about it

2. Written questions
3. Programming (Java)

 Implement 1-nearest-neighbor algorithm
 Evaluate it on two data sets
 Analyze the results
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Final Project

Proposal due 1/19
Project due 3/8
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1. Pick a problem that interests you

 Classification
 Male vs. female?
 Left-handed vs. right-handed?
 Predict grade in a class?
 Recommend a product (e.g., type of MP3 player)?

 Regression
 Stock market prediction?
 Rainfall prediction?
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2. Create or obtain a data set

 Tons of data sets are available online…
or you can create your own
 Must have at least 100 instances

 What features will you use to represent the
data?
 Even if using an existing data set, you might select

only the features that are relevant to your problem
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3. Pick a machine learning algorithm
to solve it

 Classification
 k-nearest neighbors
 Decision trees
 Support Vector Machines
 Neural Networks

 Regression
 k-nearest neighbors
 Support Vector Machines
 Neural Networks
 Naïve Bayes

 Justify your choice
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4. Design experiments

 What metrics will you use?
 We’ll cover evaluation methods in Lectures 2 and 3

 What baseline algorithm will you compare to?
 k-Nearest Neighbors is a good one
 Classification: Predict most common class
 Regression: Predict average output
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Project Requirements

 Proposal (30 points):
 Due midnight, Jan. 19

 Report (70 points):
 Your choice:

 Oral presentation (March 8) + 1-page report
 4-page report

 Reports due midnight, March 8
 Maximum of 15 oral presentations

 Project is 25% of your grade
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Next Time

 Decision Trees (read Ch. 9)
 Rule Learning
 Evaluation (read Ch. 14.1-14.3, 14.6)
 Weka: Java machine learning library

(read Weka Explorer Guide)


