
ANN Backpropagation: Weight updates for hidden nodes

Kiri Wagstaff

February 1, 2008

First, recall how a multilayer perceptron (or artificial neural network, ANN) predicts a value for a
new input, x. Assume that there is a single hidden layer. Each hidden node zh in this layer produces
an intermediate output based on a weighted sum of the inputs:

zh = sigmoid(wT
h x)

where wT indicates taking the transpose of vector w. We’ll get to the sigmoid function in a minute.
Next, the final output ŷ of the ANN is a weighted sum of the hidden node outputs (including v0,

which is the weight associated with a node that always has the value +1, just like w0).

ŷ =
H∑

h=1

vhzh + v0 (1)

where H is the number of nodes in the hidden layer.
The error associated with this prediction is

E(W, v|x) =
1
2
(y − ŷ)2

where W and v are the learned weights (W is an H-by-d matrix because there are d + 1 weights (one
for each input feature plus w0) for each of the H hidden nodes, and v is a vector of H weights, one for
each hidden node). The output of the network, ŷ, is an approximation to the true (desired) output, y.
If you’re wondering why there is a factor of 1

2 in there, you’ll see the reason shortly.
To do backpropagation, we need to: 1) update the weights v and 2) update the weights W . Here

I will show how to derive the updates if there is only a single training example, x, with an associated
label y. This result can be easily extended to handle a data set X containing n items, each with their
own output yi (and this is what you see in the book, p. 246).

Step 1: Update the weights v

To figure out how to update each the weights in v, we compute the partial derivative of E with respect
to vh (for the weight that connects the output ŷ to hidden node h) and multiply it by the learning factor
η. Actually, we use −η to indicate that we want to reverse the error that ŷ made:

∆vh = −η
δE

δvh

= −η
δE

δŷ

δŷ

δvh

= −η
δ 1

2 (y − ŷ)2

δŷ

δŷ

δvh

= −η(y − ŷ)(−1)
δŷ

δvh

= η(y − ŷ)
δŷ

δvh

1



= η(y − ŷ)zh

The 1
2 factor is canceled when we take the partial derivative, and we include a multiplicative factor

of -1 for the derivative with respect to ŷ “inside” (y − ŷ). From Equation 1, we know that δŷ
δvh

is zh.

Step 2: Update the weights W

To figure out how to update each of the weights in W , we compute the partial derivative of E with
respect to whj (for the weight that connects hidden node h with input j) and multiply it by the learning
factor η. Let’s break down the partial derivative:

∆whj = −η
δE

δwhj

= −η
δE

δŷ

δŷ

δzh

δzh

δwhj

We know that δE
δŷ is −(y − ŷ) from the previous step. The partial derivative δŷ

δzh
is also simple; from

Equation 1 we see it is just vh.
The interesting part is finding δzh

δwhj
. This can be re-written as δzh

δwT
h

x

δwT
h x

δwhj
. The first part, δzh

δwT
h

x
, is

where the sigmoid comes in. The sigmoid equation, in general, is

sigmoid(a) =
1

1 + e−a
.

I am using a here to represent any argument given to the sigmoid function. For zh, a = wT
h x. Now the

partial derivative of the sigmoid with respect to its argument, a, is:

δsigmoid(a)
δa

=
δ 1

1+e−a

δa

= − 1
(1 + e−a)2

e−a (−1)

=
1

(1 + e−a)2
e−a

=
1

1 + e−a)
e−a

1 + e−a

=
1

1 + e−a)
(1 − 1) + e−a

1 + e−a

=
1

1 + e−a)
(1 + e−a) − 1

1 + e−a

=
1

1 + e−a)

(
1 − 1

1 + e−a

)
= sigmoid(a)(1 − sigmoid(a))

So for zh, we have δzh

δwT
h

x
= zh(1 − zh). Isn’t that neat?

But don’t forget the second half, δwT
h x

δwhj
. Luckily, this is straightforward: it is just xj .

2



Thus, overall we have

∆whj = −η
δE

δwhj

= −η
δE

δŷ

δŷ

δzh

δzh

δwhj

= −η(−(y − ŷ)) vh (zh(1 − zh)xj)
= η(y − ŷ) vh zh(1 − zh)xj

That’s it! Let me know if you have any questions.

3


