ANN Backpropagation: Weight updates for hidden nodes

Kiri Wagstaff

February 1, 2008

First, recall how a multilayer perceptron (or artificial neural network, ANN) predicts a value for a new input, x. Assume that there is a single hidden layer. Each hidden node z_{h} in this layer produces an intermediate output based on a weighted sum of the inputs:

$$
z_{h}=\operatorname{sigmoid}\left(w_{h}^{T} x\right)
$$

where w^{T} indicates taking the transpose of vector w. We'll get to the sigmoid function in a minute.
Next, the final output \hat{y} of the ANN is a weighted sum of the hidden node outputs (including v_{0}, which is the weight associated with a node that always has the value +1 , just like w_{0}).

$$
\begin{equation*}
\hat{y}=\sum_{h=1}^{H} v_{h} z_{h}+v_{0} \tag{1}
\end{equation*}
$$

where H is the number of nodes in the hidden layer.
The error associated with this prediction is

$$
E(W, v \mid x)=\frac{1}{2}(y-\hat{y})^{2}
$$

where W and v are the learned weights (W is an H-by- d matrix because there are $d+1$ weights (one for each input feature plus w_{0}) for each of the H hidden nodes, and v is a vector of H weights, one for each hidden node). The output of the network, \hat{y}, is an approximation to the true (desired) output, y. If you're wondering why there is a factor of $\frac{1}{2}$ in there, you'll see the reason shortly.

To do backpropagation, we need to: 1) update the weights v and 2) update the weights W. Here I will show how to derive the updates if there is only a single training example, x, with an associated label y. This result can be easily extended to handle a data set X containing n items, each with their own output y_{i} (and this is what you see in the book, p. 246).

Step 1: Update the weights v

To figure out how to update each the weights in v, we compute the partial derivative of E with respect to v_{h} (for the weight that connects the output \hat{y} to hidden node h) and multiply it by the learning factor η. Actually, we use $-\eta$ to indicate that we want to reverse the error that \hat{y} made:

$$
\begin{aligned}
\Delta v_{h} & =-\eta \frac{\delta E}{\delta v_{h}} \\
& =-\eta \frac{\delta E}{\delta \hat{y}} \frac{\delta \hat{y}}{\delta v_{h}} \\
& =-\eta \frac{\delta \frac{1}{2}(y-\hat{y})^{2}}{\delta \hat{y}} \frac{\delta \hat{y}}{\delta v_{h}} \\
& =-\eta(y-\hat{y})(-1) \frac{\delta \hat{y}}{\delta v_{h}} \\
& =\eta(y-\hat{y}) \frac{\delta \hat{y}}{\delta v_{h}}
\end{aligned}
$$

$$
=\eta(y-\hat{y}) z_{h}
$$

The $\frac{1}{2}$ factor is canceled when we take the partial derivative, and we include a multiplicative factor of -1 for the derivative with respect to \hat{y} "inside" $(y-\hat{y})$. From Equation 1, we know that $\frac{\delta \hat{y}}{\delta v_{h}}$ is z_{h}.

Step 2: Update the weights W

To figure out how to update each of the weights in W, we compute the partial derivative of E with respect to $w_{h j}$ (for the weight that connects hidden node h with input j) and multiply it by the learning factor η. Let's break down the partial derivative:

$$
\begin{aligned}
\Delta w_{h j} & =-\eta \frac{\delta E}{\delta w_{h j}} \\
& =-\eta \frac{\delta E}{\delta \hat{y}} \frac{\delta \hat{y}}{\delta z_{h}} \frac{\delta z_{h}}{\delta w_{h j}}
\end{aligned}
$$

We know that $\frac{\delta E}{\delta \hat{y}}$ is $-(y-\hat{y})$ from the previous step. The partial derivative $\frac{\delta \hat{y}}{\delta z_{h}}$ is also simple; from Equation 1 we see it is just v_{h}.

The interesting part is finding $\frac{\delta z_{h}}{\delta w_{h j}}$. This can be re-written as $\frac{\delta z_{h}}{\delta w_{h}^{T} x} \frac{\delta w_{h}^{T} x}{\delta w_{h j}}$. The first part, $\frac{\delta z_{h}}{\delta w_{h}^{T} x}$, is where the sigmoid comes in. The sigmoid equation, in general, is

$$
\operatorname{sigmoid}(a)=\frac{1}{1+e^{-a}}
$$

I am using a here to represent any argument given to the sigmoid function. For $z_{h}, a=w_{h}^{T} x$. Now the partial derivative of the sigmoid with respect to its argument, a, is:

$$
\begin{aligned}
\frac{\delta \operatorname{sigmoid}(a)}{\delta a} & =\frac{\delta \frac{1}{1+e^{-a}}}{\delta a} \\
& =-\frac{1}{\left(1+e^{-a}\right)^{2}} e^{-a}(-1) \\
& =\frac{1}{\left(1+e^{-a}\right)^{2}} e^{-a} \\
& =\frac{1}{\left.1+e^{-a}\right)} \frac{e^{-a}}{1+e^{-a}} \\
& =\frac{1}{\left.1+e^{-a}\right)} \frac{(1-1)+e^{-a}}{1+e^{-a}} \\
& =\frac{1}{\left.1+e^{-a}\right)} \frac{\left(1+e^{-a}\right)-1}{1+e^{-a}} \\
& =\frac{1}{\left.1+e^{-a}\right)}\left(1-\frac{1}{1+e^{-a}}\right) \\
& =\operatorname{sigmoid}(\mathrm{a})(1-\operatorname{sigmoid}(\mathrm{a}))
\end{aligned}
$$

So for z_{h}, we have $\frac{\delta z_{h}}{\delta w_{h}^{T} x}=z_{h}\left(1-z_{h}\right)$. Isn't that neat?
But don't forget the second half, $\frac{\delta w_{h}^{T} x}{\delta w_{h j}}$. Luckily, this is straightforward: it is just x_{j}.

Thus, overall we have

$$
\begin{aligned}
\Delta w_{h j} & =-\eta \frac{\delta E}{\delta w_{h j}} \\
& =-\eta \frac{\delta E}{\delta \hat{y}} \frac{\delta \hat{y}}{\delta z_{h}} \frac{\delta z_{h}}{\delta w_{h j}} \\
& =-\eta(-(y-\hat{y})) v_{h}\left(z_{h}\left(1-z_{h}\right) x_{j}\right) \\
& =\eta(y-\hat{y}) v_{h} z_{h}\left(1-z_{h}\right) x_{j}
\end{aligned}
$$

That's it! Let me know if you have any questions.

