ANN Backpropagation: Weight updates for hidden nodes

Kiri Wagstaff
February 1, 2008

First, recall how a multilayer perceptron (or artificial neural network, ANN) predicts a value for a
new input, . Assume that there is a single hidden layer. Each hidden node zj in this layer produces
an intermediate output based on a weighted sum of the inputs:

2, = sigmoid(w} z)

where w” indicates taking the transpose of vector w. We’ll get to the sigmoid function in a minute.
Next, the final output § of the ANN is a weighted sum of the hidden node outputs (including vy,
which is the weight associated with a node that always has the value 41, just like wy).

H

§= vz +vo (1)

h=1

where H is the number of nodes in the hidden layer.
The error associated with this prediction is

B(W,olz) = 3 (4 — )"

where W and v are the learned weights (W is an H-by-d matrix because there are d + 1 weights (one
for each input feature plus wy) for each of the H hidden nodes, and v is a vector of H weights, one for
each hidden node). The output of the network, ¢, is an approximation to the true (desired) output, y.
If you’re wondering why there is a factor of % in there, you’ll see the reason shortly.

To do backpropagation, we need to: 1) update the weights v and 2) update the weights W. Here
I will show how to derive the updates if there is only a single training example, z, with an associated
label y. This result can be easily extended to handle a data set X containing n items, each with their
own output y; (and this is what you see in the book, p. 246).

Step 1: Update the weights v

To figure out how to update each the weights in v, we compute the partial derivative of E with respect
to vp, (for the weight that connects the output § to hidden node k) and multiply it by the learning factor
1. Actually, we use —n to indicate that we want to reverse the error that ¢ made:

OF
A = _—p—
Uh névh
_ _ 9By
= Tsg oo,
_ 03y —9)? 8y
5@ 5Uh
= -
= my —vy sur
.\ 07
= W(y—y)m



= n(y—9)zn

The % factor is canceled when we take the partial derivative, and we include a multiplicative factor
of -1 for the derivative with respect to ¢ “inside” (y — ¢). From Equation 1, we know that nyh is zp.

Step 2: Update the weights W

To figure out how to update each of the weights in W, we compute the partial derivative of E with
respect to wp; (for the weight that connects hidden node h with input j) and multiply it by the learning
factor 7. Let’s break down the partial derivative:

oF

_néwhj
SE 5§ 6z,
77’@@ dwh

Awhj

We know that % is —(y — ¢) from the previous step. The partial derivative ;779}1 is also simple; from

Equation 1 we see it is just vp,.
bz, Owjx
Swlx dwp;

The interesting part is finding 55%:. This can be re-written as
J

. The first part, 2%, is

T
dw, x

where the sigmoid comes in. The sigmoid equation, in general, is

1
sigmoid(a) = gyt
e a

I am using a here to represent any argument given to the sigmoid function. For 25, a = wlz. Now the
partial derivative of the sigmoid with respect to its argument, a, is:

dsigmoid(a) 5@
oa B da
1 —a
= Treme Y
— 1 efa
(T4 ea)2
1 e ®

l+e2) 1+e @

1 (1-1)+e@
l+e ) 1+4e@

1 (I4+e %) -1
1+e%) 14e@

1 1
= 1—
1+e9) 1+e @

= sigmoid(a)(1 — sigmoid(a))

So for zj, we have 6iff$ = zp(1 — 2zp). Isn’t that neat?
But don’t forget the second half,

T
dwy,
5’LU;,,J' :

Luckily, this is straightforward: it is just x;.



Thus, overall we have

Awpj = —n

—n(=(y = 9)) vn (2n(1 = zn)x;5)
= Yy —9) vn zn(1 — 2n)7;

That’s it! Let me know if you have any questions.



