CS 461: Machine Learning Lecture 5

Dr. Kiri Wagstaff kiri.wagstaff@calstatela.edu

Plan for Today

- Midterm Exam
- Notes
 - Room change for 2/16: E&T A129
 - Sign up for post-midterm conferences
 - Questions on Homework 3?
- Probability
 - Axioms
- Bayesian Learning
 - Classification
 - Bayes's Rule
 - Bayesian Networks
 - Naïve Bayes Classifier
 - Association Rules

Review from Lecture 4

- Support Vector Machines
 - Non-separable data: the Kernel Trick
 - Regression
- Neural Networks
 - Perceptrons
 - Multilayer Perceptrons
 - Backpropagation

Probability

Appendix A

Background and Axioms of Probability

- Random variable: X
- Probability: fraction of possible worlds where X is true
- Axioms
 - Positivity
 - Excluded Middle
 - Conjunction ("and")
 - Disjunction ("or")
- Conditional probabilities

Bayesian Learning

Chapter 3

2/2/08

Making Inferences with Probability

- Result of tossing a coin is ∈ {Heads,Tails}
- Random var *Coin* ∈ {Heads,Tails}
 - Bernoulli: $P\{Coin=Heads\} = p_{o_i} P\{Coin=Tails\} = 1-p_o$
- Sample: $X = \{x^t\}_{t=1}^N$
 - Estimation: p_o = #{Heads}/#{Tosses}
- Prediction of next toss:
 - Heads if $p_o > \frac{1}{2}$, Tails otherwise

Classification

Credit scoring:

- Inputs are income and savings
- Output is low-risk vs high-risk
- Input: $\mathbf{x} = [x_1, x_2]^T$, Output: $C \in \{0, 1\}$

Prediction:

choose
$$\begin{cases} C = 1 \text{ if } P(C = 1 | x_1, x_2) > 0.5 \\ C = 0 \text{ otherwise} \end{cases}$$

or equivalently
choose
$$\begin{cases} C = 1 \text{ if } P(C = 1 | x_1, x_2) > P(C = 0 | x_1, x_2) \\ C = 0 \text{ otherwise} \end{cases}$$

Bayes's Rule prior likelihood posterior $P(C \mid \mathbf{x}) = \frac{P(C) p(\mathbf{x} \mid C)}{C}$ evidence P(C = 0) + P(C = 1) = 1 $p(\mathbf{x}) = p(\mathbf{x} | C = 1)P(C = 1) + p(\mathbf{x} | C = 0)P(C = 0)$ $p(C = 0 | \mathbf{x}) + P(C = 1 | \mathbf{x}) = 1$

2/2/08

Causes and Bayes's Rule

Diagnostic inference: Knowing that the grass is wet, what is the probability that rain is the cause?

$$P(R | W) = \frac{P(W | R)P(R)}{P(W)}$$
$$= \frac{P(W | R)P(R)}{P(W | R)P(R) + P(W | \sim R)P(\sim R)}$$
$$= \frac{0.9 \times 0.4}{0.9 \times 0.4 + 0.2 \times 0.6} = 0.75$$

Causal vs. Diagnostic Inference

Causal inference: If the sprinkler is on, what is the probability that the grass is wet?

 $P(W|S) = P(W|R,S) P(R|S) + P(W|\sim R,S) P(\sim R|S) + P(W|\sim R,S) P(\sim R|S)$ = $P(W|R,S) P(R) + P(W|\sim R,S) P(\sim R)$ = 0.95 0.4 + 0.9 0.6 = 0.92

Diagnostic inference: If the grass is wet, what is the probability that the sprinkler is on? P(S|W) = 0.35 > 0.2 P(S|R,W) = 0.21Explaining away: Knowing that it has rained decreases the probability that the sprinkler is on.

2/2/08

Bayesian Networks: Causes

Causal inference: P(W|C) = P(W|R,S) P(R,S|C) + $P(W|\sim R,S) P(\sim R,S|C) +$ $P(W|R,\sim S) P(R,\sim S|C) +$ $P(W|\sim R,\sim S) P(\sim R,\sim S|C)$

and use the fact that P(R,S|C) = P(R|C) P(S|C)

2/2/08

CS 461, Winter 2008

Bayesian Networks: Classification

Bayes rule inverts the arc:

$$P(C \mid \mathbf{x}) = \frac{p(\mathbf{x} \mid C)P(C)}{p(\mathbf{x})}$$

Naïve Bayes... why "naïve"?

Given *C*, x_i are independent:

 $p(\mathbf{x}|C) = p(x_1|C) \ p(x_2|C) \dots \ p(x_d|C)$

CS 461, Winter 2008 [Alpaydin 2004 © The MIT Press]

Naïve Bayes Classifier

 The book's formulation = maximum likelihood estimator (MLE)

$$C^{\text{predict}} = \underset{c}{\operatorname{argmax}} P(X_1 = u_1 \cdots X_m = u_m \mid C = c)$$

 More useful: maximum a-posteriori (MAP) classifier

$$C^{\text{predict}} = \underset{c}{\operatorname{argmax}} P(C = c \mid X_1 = u_1 \cdots X_m = u_m)$$

MAP broken down

$$P(C = c | X_{1} = u_{1} \cdots X_{m} = u_{m})$$

$$= \frac{P(X_{1} = u_{1} \cdots X_{m} = u_{m} | C = c)P(C = c)}{P(X_{1} = u_{1} \cdots X_{m} = u_{m})}$$

$$= \frac{P(X_{1} = u_{1} \cdots X_{m} = u_{m} | C = c)P(C = c)}{\sum_{j=1}^{k} P(X_{1} = u_{1} \cdots X_{m} = u_{m} | C = c_{j})P(C = c_{j})}$$

Naïve Bayes in action $= \frac{P(X_1 = u_1 \cdots X_m = u_m | C = c)P(C = c)}{\sum_{j=1}^k P(X_1 = u_1 \cdots X_m = u_m | C = c_j)P(C = c_j)}$

Train

Outlook	Temperature	Humidity	Wind	PlayTennis			
Training Sets							
Sunny	Hot	High	Weak	No			
Sunny	Hot	High	Strong	No			
Overcast	Hot	High	Weak	Yes			
Rain	Mild	High	Weak	Yes			
Rain	Cool	Normal	Weak	Yes			
Rain	Cool	Normal	Strong	No			
Overcast	Cool	Normal	Strong	Yes			
Sunny	Mild	High	Weak	No			
Sunny	Cool	Normal	Weak	Yes			
Rain	Mild	Normal	Weak	Yes			
Sunny	Mild	Normal	Strong	Yes			
Overcast	Mild	High	Strong	Yes			
Overcast	Hot	Normal	Weak	Yes			
Rain	Mild	High	Strong	No			

		Test				
Outlook	Temperature	Humidity	Wind	PlayTennis		
Testing Examples						
Sunny	Mild	Normal	Weak	Yes		
Overcast	Hot	High	Strong	Yes		
Sunny	Mild	High	Strong	No		
Rain	Hot	High	Weak	Yes		
Rain	Mild	Normal	Weak	Yes		
Sunny	Mild	High	Strong	Yes		

Association Rules

• Association rule: $X \rightarrow Y$

• Support
$$(X \rightarrow Y)$$
:

 $P(X,Y) = \frac{\#\{\text{customers who bought } X \text{ and } Y\}}{\#\{\text{customers}\}}$

• Confidence $(X \rightarrow Y)$:

$$P(Y \mid X) = \frac{P(X,Y)}{P(X)}$$
$$= \frac{\#\{\text{customers who bought } X \text{ and } Y\}}{\#\{\text{customers who bought } X\}}$$

Summary: Key Points for Today

- Probability
 - Axioms
- Bayesian Learning
 - Classification
 - Bayes's Rule
 - Bayesian Networks
 - Naïve Bayes Classifier
 - Association Rules

Next Time

- Parametric Methods (read Ch. 4.1-4.5, Mitchell p. 177-179)
- Questions to answer from the reading
 - Posted on the website (calendar)... if you find them useful?