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CS 461: Machine Learning
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Plan for Today

 Unsupervised Learning
 K-means Clustering
 EM Clustering

 Homework 4
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Review from Lecture 6

 Parametric methods
 Data comes from distribution
 Bernoulli, Gaussian, and their parameters
 How good is a parameter estimate? (bias, variance)

 Bayes estimation
 ML: use the data (assume equal priors)
 MAP: use the prior and the data
 Bayes estimator: integrated estimate (weighted)

 Parametric classification
 Maximize the posterior probability
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Clustering

Chapter 7
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Unsupervised Learning

 The data has no labels!
 What can we still learn?

 Salient groups in the data
 Density in feature space

 Key approach: clustering
 … but also:

 Association rules
 Density estimation
 Principal components analysis (PCA)
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Clustering

 Group items by similarity

 Density estimation, cluster models
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Applications of Clustering

 Image Segmentation

[Ma and Manjunath, 2004]

 Data Mining: Targeted marketing
 Remote Sensing: Land cover types
 Text Analysis

[Selim Aksoy]
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Applications of Clustering

 Text Analysis: Noun Phrase Coreference

John Simon, Chief Financial
Officer of Prime Corp. since
1986, saw his pay jump 20%,
to $1.3 million, as the 37-year-
old also became the financial-
services company’s president.

John Simon
Chief Financial Officer
his
the 37-year-old
president

Prime Corp.
the financial-services
company

Input text

Cluster PC

1986

pay

20%

$1.3 million

Singletons
Cluster JS
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and sometimes
in between

Sometimes impossible

Sometimes easy
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K-means
1. Ask user how many

clusters they’d like.
(e.g. k=5)

[© Andrew Moore]
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K-means
1. Ask user how many

clusters they’d like.
(e.g. k=5)

2. Randomly guess k
cluster Center
locations

[© Andrew Moore]
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K-means
1. Ask user how many

clusters they’d like.
(e.g. k=5)

2. Randomly guess k
cluster Center
locations

3. Each datapoint finds
out which Center it’s
closest to. (Thus
each Center “owns”
a set of datapoints)

[© Andrew Moore]
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K-means
1. Ask user how many

clusters they’d like.
(e.g. k=5)

2. Randomly guess k
cluster Center
locations

3. Each datapoint finds
out which Center it’s
closest to.

4. Each Center finds
the centroid of the
points it owns

[© Andrew Moore]
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K-means
1. Ask user how many

clusters they’d like.
(e.g. k=5)

2. Randomly guess k
cluster Center
locations

3. Each datapoint finds
out which Center it’s
closest to.

4. Each Center finds
the centroid of the
points it owns…

5. …and jumps there

6. …Repeat until
terminated!

[© Andrew Moore]
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K-means
Start: k=5

Example generated by
Dan Pelleg’s super-duper
fast K-means system:

Dan Pelleg and Andrew
Moore. Accelerating Exact
k-means Algorithms with
Geometric Reasoning.
Proc. Conference on
Knowledge Discovery in
Databases 1999,
(KDD99) (available on
www.autonlab.org/pap.html)

[© Andrew Moore]
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K-means
continues…

[© Andrew Moore]
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K-means
continues…

[© Andrew Moore]
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K-means
continues…

[© Andrew Moore]
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K-means
continues…

[© Andrew Moore]
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K-means
continues…

[© Andrew Moore]
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K-means
continues…

[© Andrew Moore]
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K-means
continues…

[© Andrew Moore]



2/16/08 CS 461, Winter 2008 23

K-means
continues…

[© Andrew Moore]
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K-means
terminates

[© Andrew Moore]
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K-means Algorithm

1. Randomly select k cluster centers

2. While (points change membership)
1. Assign each point to its closest cluster

 (Use your favorite distance metric)

2. Update each center to be the mean of its items

 Objective function: Variance

 http://metamerist.com/kmeans/example39.htm
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K-means Algorithm: Example

1. Randomly select k cluster centers

2. While (points change membership)
1. Assign each point to its closest cluster

 (Use your favorite distance metric)

2. Update each center to be the mean of its items

 Objective function: Variance

 Data: [1, 15, 4, 2, 17, 10, 6, 18]
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K-means for Compression

Original image Clustered, k=4

159 KB 53 KB
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Issue 1: Local Optima

 K-means is greedy!

 Converging to a non-global optimum:

[Example from Andrew Moore]
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Issue 1: Local Optima

 K-means is greedy!
 Converging to a non-global optimum:

[Example from Andrew Moore]
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Issue 2: How long will it take?

 We don’t know!

 K-means is O(nkdI)
 d = # features (dimensionality)

 I =# iterations

 # iterations depends on random initialization
 “Good” init: few iterations

 “Bad” init: lots of iterations

 How can we tell the difference, before clustering?
 We can’t

 Use heuristics to guess “good” init
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Issue 3: How many clusters?

 The “Holy Grail” of clustering
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Issue 3: How many clusters?

 Select k that gives partition with least variance?

 Best k depends on the user’s goal

[Dhande and Fiore, 2002]
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Issue 4: How good is the result?

 Rand Index
 A = # pairs in same cluster in both partitions
 B = # pairs in different clusters in both partitions
 Rand = (A + B) / Total number of pairs

1

532

4
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1

53 24 7
6

8

9
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Rand = (5 + 26) / 45
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K-means: Parametric or Non-parametric?

 Cluster models: means
 Data models?

 All clusters are spherical
 Distance in any direction is the same
 Cluster may be arbitrarily “big” to include outliers
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EM Clustering

 Parametric solution
 Model the data distribution

 Each cluster: Gaussian model
 Data: “mixture of models”

 E-step: estimate cluster memberships

 M-step: maximize likelihood (clusters, params)
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The GMM assumption

• There are k components. The
i’th component is called ωi

• Component ωi has an
associated mean vector µi

µ1

µ2

µ3

[© Andrew Moore]
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The GMM assumption

• There are k components. The
i’th component is called ωi

• Component ωi has an
associated mean vector µi

• Each component generates data
from a Gaussian with mean µi
and covariance matrix σ2I

Assume that each datapoint is
generated according to the
following recipe:

µ1

µ2

µ3

[© Andrew Moore]
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The GMM assumption

• There are k components. The
i’th component is called ωi

• Component ωi has an
associated mean vector µi

• Each component generates data
from a Gaussian with mean µi
and covariance matrix σ2I

Assume that each datapoint is
generated according to the
following recipe:

1. Pick a component at random.
Choose component i with
probability P(ωi).

µ2

[© Andrew Moore]
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The GMM assumption

• There are k components. The
i’th component is called ωi

• Component ωi has an
associated mean vector µi

• Each component generates data
from a Gaussian with mean µi
and covariance matrix σ2I

Assume that each datapoint is
generated according to the
following recipe:

1. Pick a component at random.
Choose component i with
probability P(ωi).

2. Datapoint ~ N(µi, σ2I )

µ2

x

[© Andrew Moore]
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The General GMM assumption

µ1

µ2

µ3

• There are k components. The
i’th component is called ωi

• Component ωi has an
associated mean vector µi

• Each component generates data
from a Gaussian with mean µi
and covariance matrix Σi

Assume that each datapoint is
generated according to the
following recipe:

1. Pick a component at random.
Choose component i with
probability P(ωi).

2. Datapoint ~ N(µi, Σi )
[© Andrew Moore]
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EM in action

 http://www.the-wabe.com/notebook/em-
algorithm.html
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Gaussian
Mixture
Example:
Start

[© Andrew Moore]
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After first
iteration

[© Andrew Moore]
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After 2nd
iteration

[© Andrew Moore]
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After 3rd
iteration

[© Andrew Moore]



2/16/08 CS 461, Winter 2008 46

After 4th
iteration

[© Andrew Moore]
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After 5th
iteration

[© Andrew Moore]
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After 6th
iteration

[© Andrew Moore]
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After 20th
iteration

[© Andrew Moore]
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EM Benefits

 Model actual data distribution, not just centers
 Get probability of membership in each cluster,

not just distance
 Clusters do not need to be “round”
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EM Issues?

 Local optima
 How long will it take?
 How many clusters?
 Evaluation
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Summary: Key Points for Today

 Unsupervised Learning
 Why?  How?

 K-means Clustering
 Iterative
 Sensitive to initialization
 Non-parametric
 Local optimum
 Rand Index

 EM Clustering
 Iterative
 Sensitive to initialization
 Parametric
 Local optimum
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Next Time

 Reinforcement Learning
Robots!
(read Ch. 16.1-16.5)

 Reading questions posted on website


