CS 461: Machine Learning Lecture 7

Dr. Kiri Wagstaff kiri.wagstaff@calstatela.edu

Plan for Today

- Unsupervised Learning
- K-means Clustering
- EM Clustering
- Homework 4

Review from Lecture 6

- Parametric methods
 - Data comes from distribution
 - Bernoulli, Gaussian, and their parameters
 - How good is a parameter estimate? (bias, variance)
- Bayes estimation
 - ML: use the data (assume equal priors)
 - MAP: use the prior and the data
 - Bayes estimator: integrated estimate (weighted)
- Parametric classification
 - Maximize the posterior probability

Clustering

Chapter 7

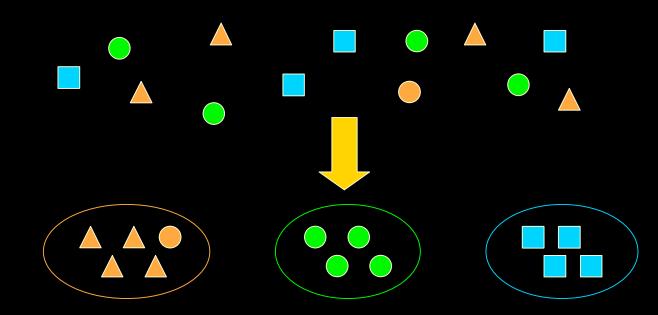
2/16/08

Unsupervised Learning

- The data has no labels!
- What can we still learn?
 - Salient groups in the data
 - Density in feature space
- Key approach: clustering
- ... but also:
 - Association rules
 - Density estimation
 - Principal components analysis (PCA)

Clustering

Group items by similarity



Density estimation, cluster models

Applications of Clustering

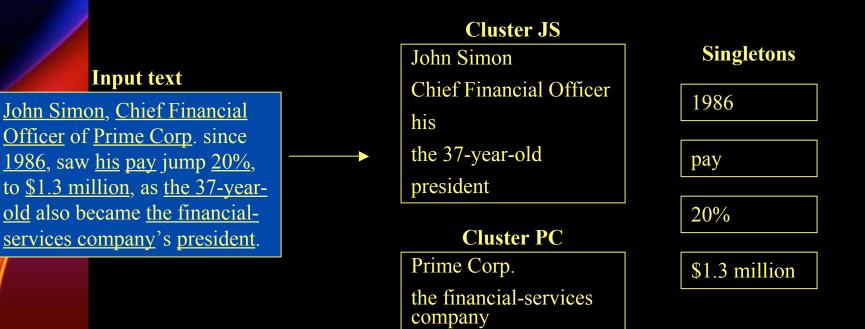
Image Segmentation

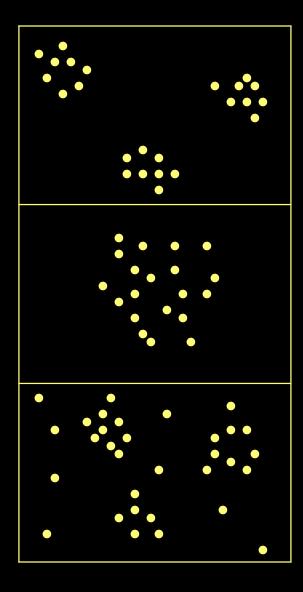
[[]Ma and Manjunath, 2004]

- Data Mining: Targeted marketing
- Remote Sensing: Land cover types
- **Text Analysis**

Applications of Clustering

Text Analysis: Noun Phrase Coreference



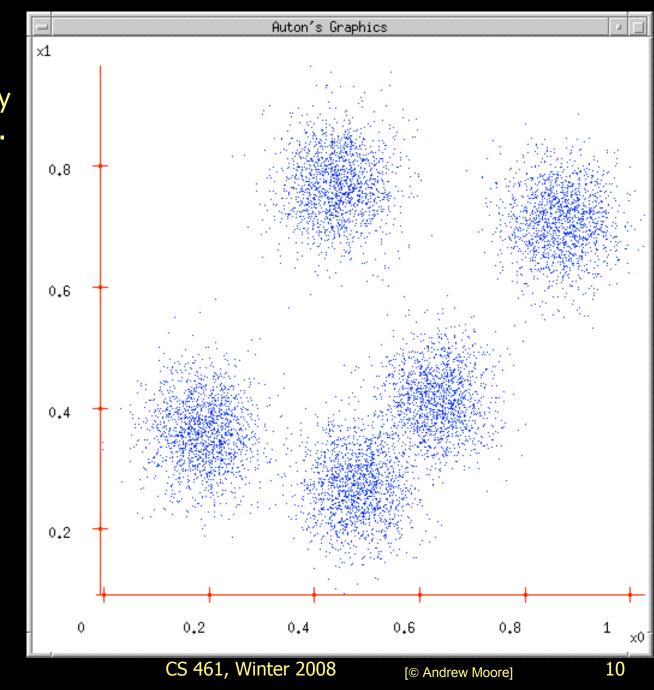


Sometimes easy

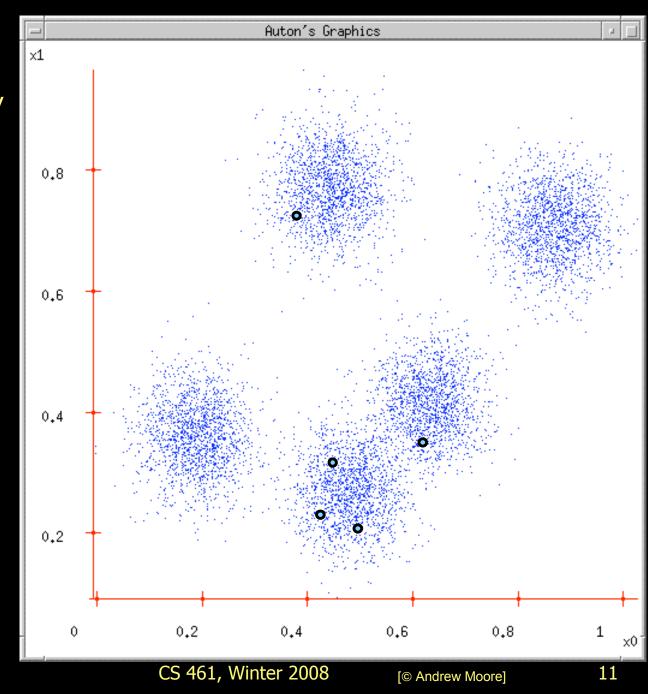
Sometimes impossible

and sometimes in between

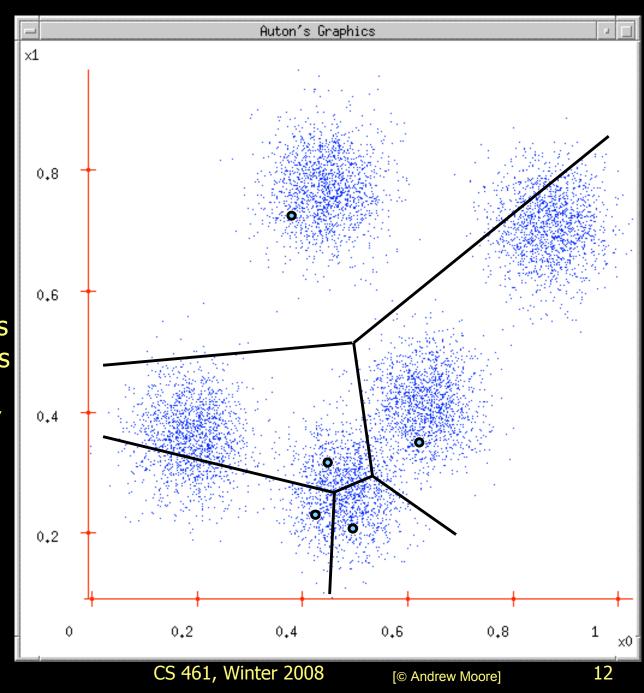
1. Ask user how many clusters they'd like. *(e.g. k=5)*



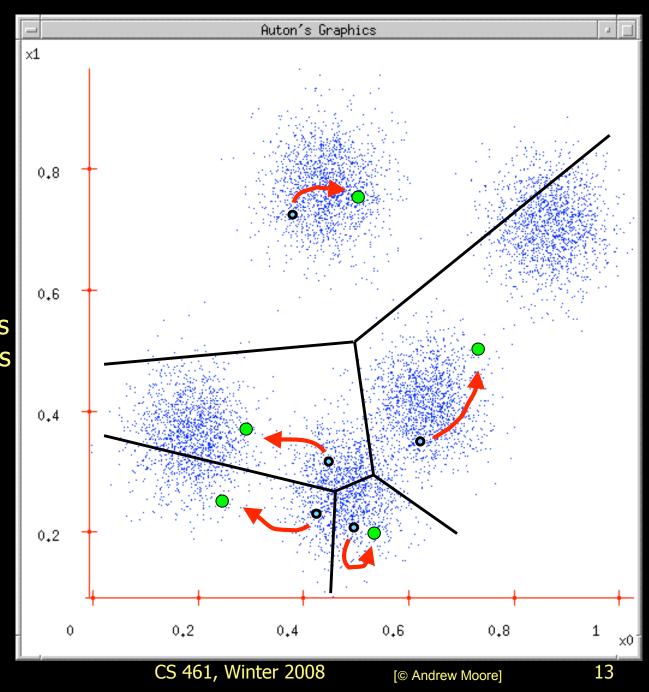
- 1. Ask user how many clusters they'd like. *(e.g. k=5)*
- 2. Randomly guess k cluster Center locations



- Ask user how many clusters they'd like. (e.g. k=5)
- 2. Randomly guess k cluster Center locations
- 3. Each datapoint finds out which Center it's closest to. (Thus each Center "owns" a set of datapoints)



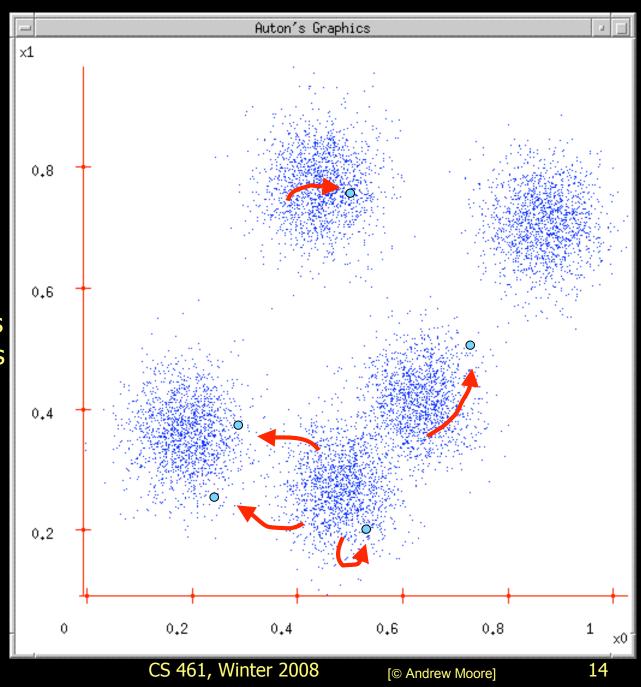
- Ask user how many clusters they'd like. (e.g. k=5)
- 2. Randomly guess k cluster Center locations
- 3. Each datapoint finds out which Center it's closest to.
- 4. Each Center finds the centroid of the points it owns



- Ask user how many clusters they'd like. (e.g. k=5)
- 2. Randomly guess k cluster Center locations
- 3. Each datapoint finds out which Center it's closest to.
- 4. Each Center finds the centroid of the points it owns...
- 5. ...and jumps there

2/16/08

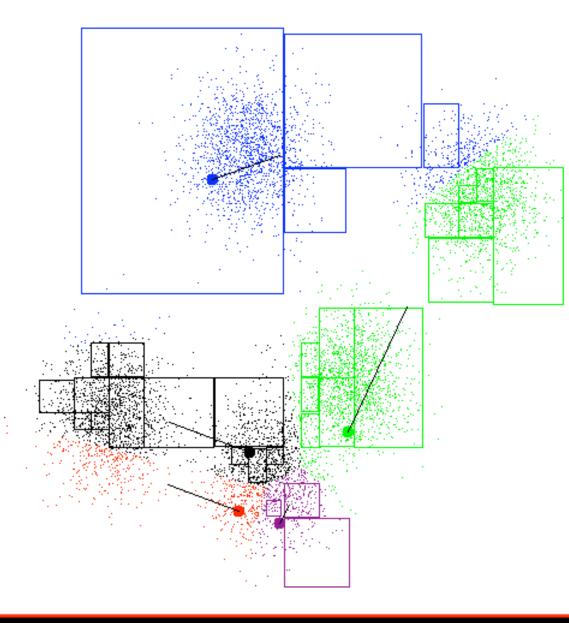
6. ...Repeat until terminated!



K-means Start: k=5

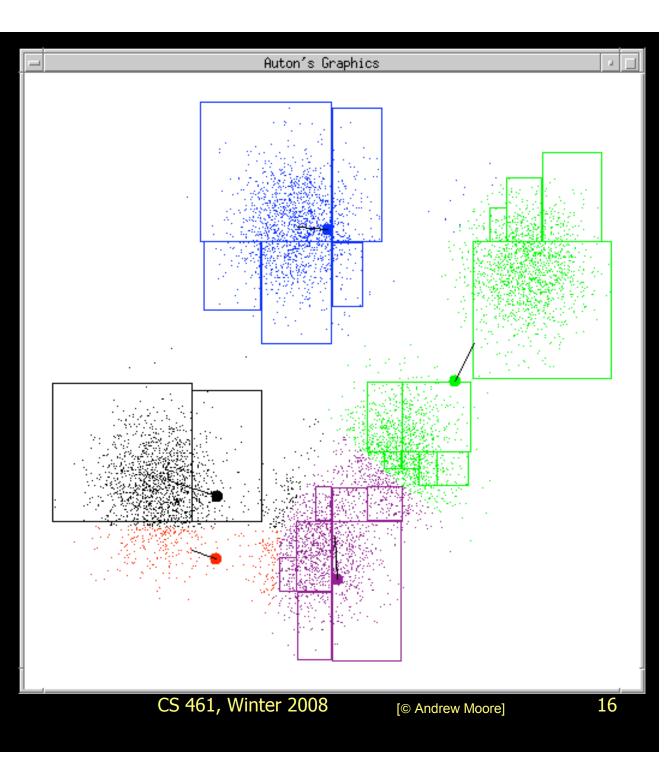
Example generated by Dan Pelleg's super-duper fast K-means system:

Dan Pelleg and Andrew Moore. Accelerating Exact k-means Algorithms with Geometric Reasoning. Proc. Conference on Knowledge Discovery in Databases 1999, (KDD99) (available on www.autonlab.org/pap.html)

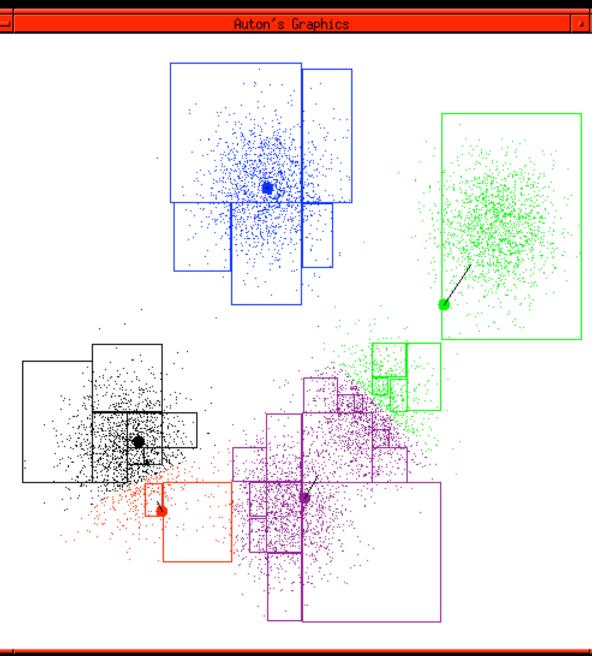


Auton's Graphics

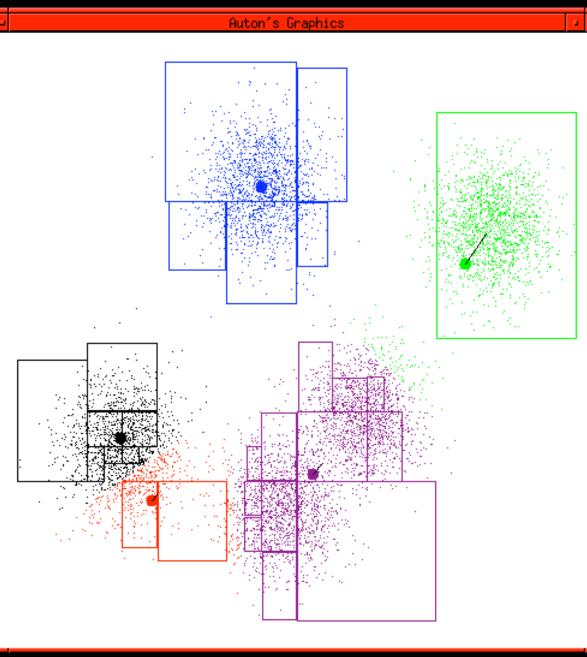
2/16/08

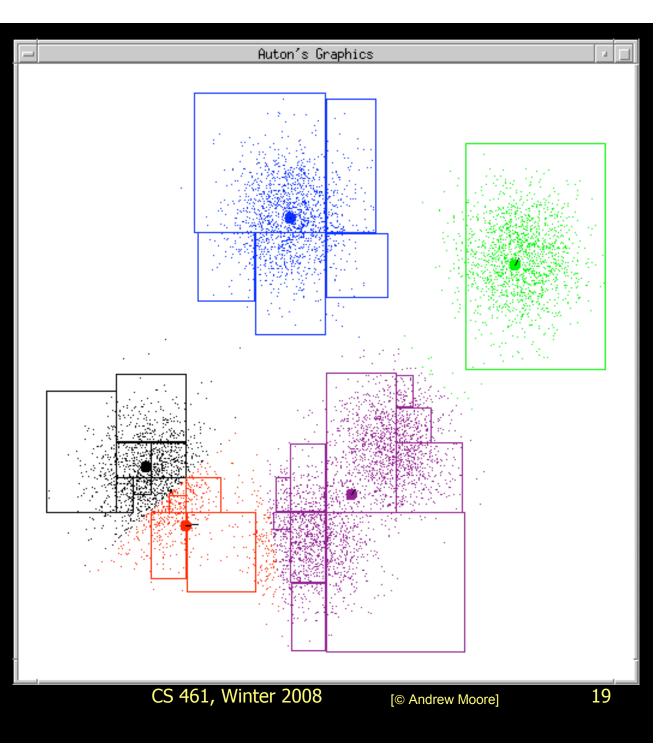


2/16/08

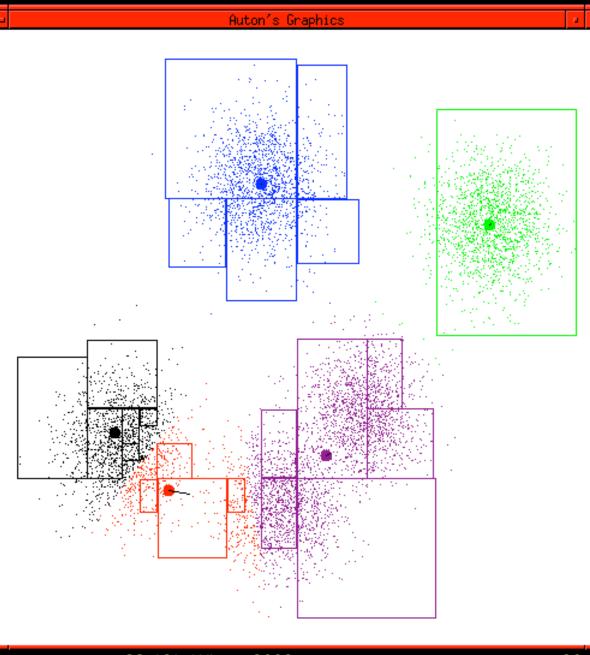


2/16/08

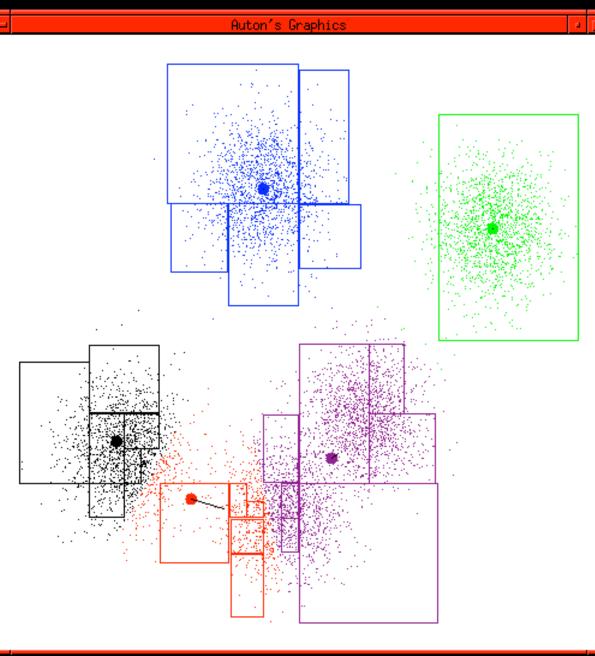




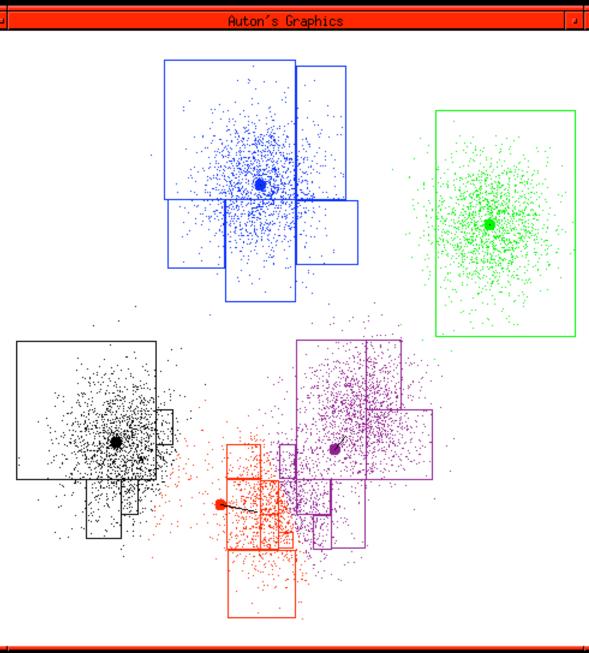
2/16/08

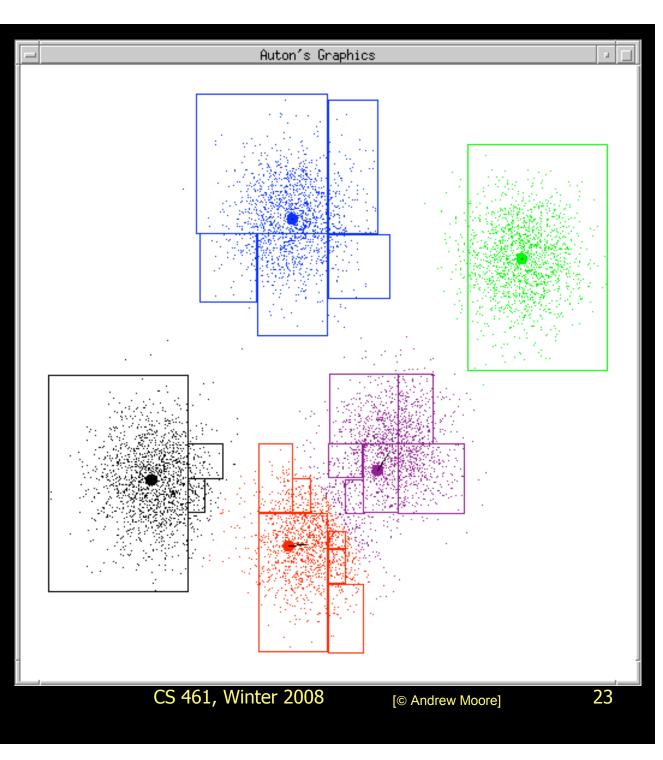


2/16/08



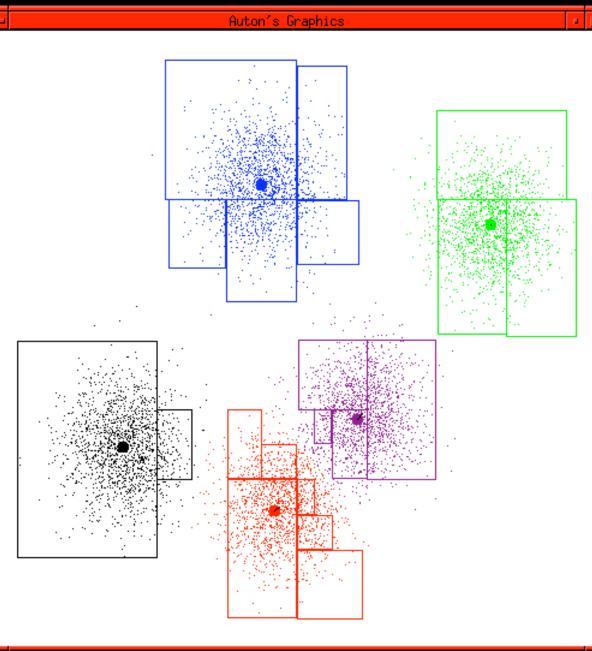
2/16/08





K-means terminates

2/16/08



CS 461, Winter 2008

[© Andrew Moore]

24

K-means Algorithm

- 1. Randomly select *k* cluster centers
- 2. While (points change membership)
 - 1. Assign each point to its closest cluster
 - (Use your favorite distance metric)
 - 2. Update each center to be the mean of its items
- Objective function: Variance

$$V = \sum_{c=1}^{k} \sum_{x_j \in C_c} dist(x_j, \mu_c)^2$$

<u>http://metamerist.com/kmeans/example39.htm</u>

2/16/08

K-means Algorithm: Example

- 1. Randomly select *k* cluster centers
- 2. While (points change membership)
 - 1. Assign each point to its closest cluster
 - (Use your favorite distance metric)
 - 2. Update each center to be the mean of its items

Objective function: Variance

$$V = \sum_{c=1}^{k} \sum_{x_j \in C_c} dist(x_j, \mu_c)^2$$

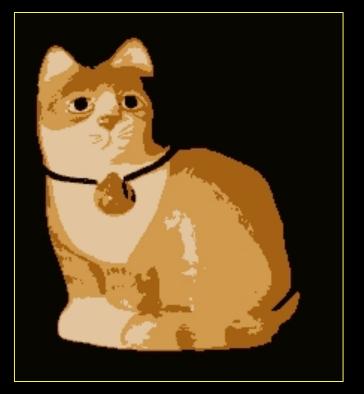
Data: [1, 15, 4, 2, 17, 10, 6, 18]

K-means for Compression

Original image

159 KB

Clustered, k=4

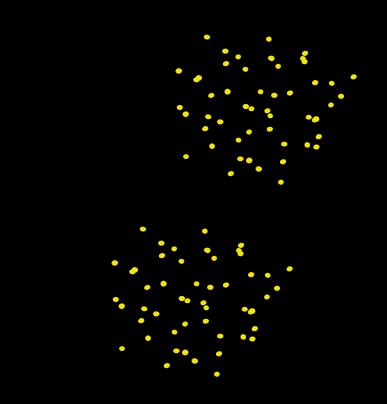


53 KB

2/16/08

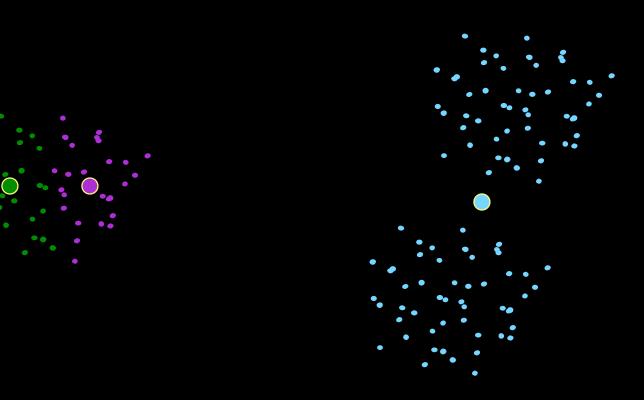
Issue 1: Local Optima

- K-means is greedy!
- Converging to a non-global optimum:



Issue 1: Local Optima

- K-means is greedy!
- Converging to a non-global optimum:



Issue 2: How long will it take?

- We don't know!
- K-means is O(nkdI)
 - d = # features (dimensionality)
 - I =# iterations
- # iterations depends on random initialization
 - "Good" init: few iterations
 - "Bad" init: lots of iterations
 - How can we tell the difference, before clustering?
 - We can't
 - Use heuristics to guess "good" init

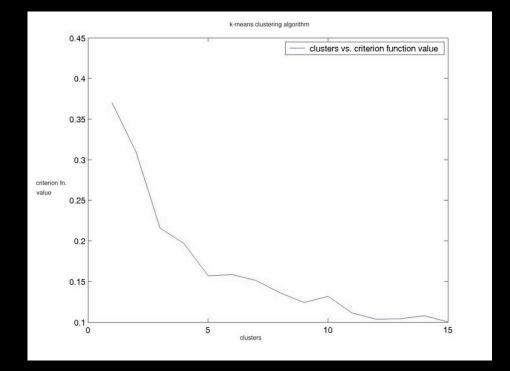
Issue 3: How many clusters?

The "Holy Grail" of clustering

A ŧ			2 *	*	Ĩ	3 ₽	*		4 * ♣	*	5 *	* *	•	6 **	*	7 +	*.•	*	8 * *	*	9 •	÷	10 +	÷+	J ‡ †, ,∏	Q + *	K ŧ
	*	*		÷	ŧ		* *	* 9	÷	**		* *	• *	*	*∮		*** * *	♣ ₩ *	*	**************************************	*	****		*** *** *	N	? ;	*
A ♠	¢		2 •	↑		3 ♠	♠ ♠ ♥	Ω	4 ♠ ♠ ♥		5 ♠	* 4 * * *	•	6	♠ ♠ ♥¶	7	*		8 •		9 • •		10 ₽		J		K K K K K K K K K K K K K K
•	¥	•	2	*	-	3 ♥	*	•	4 . ♥	* *	5	•••	2	€ ♥ ♥	¥ ¥ \$	7		• • 2	8 •		9.	6					
A •	٠	*∀	2 •	•	\$	3♦	• • •	* Q	4 ♦ • ●	◆ ◆ *	5	•••	÷ g	€ • •	♦ ♦ ♦ §	7		• • • į	8		9 • •	•	10 +	, , , , , , , , , , , , , , , , , , ,			K.

Issue 3: How many clusters?

Select k that gives partition with least variance?



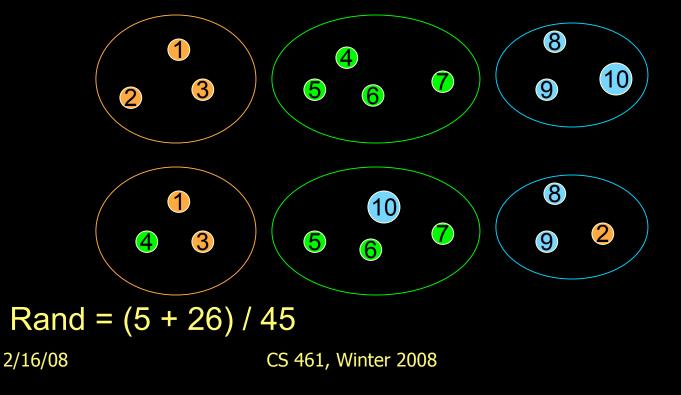
[Dhande and Fiore, 2002]

Best k depends on the user's goal

Issue 4: How good is the result?

Rand Index

- A = # pairs in same cluster in both partitions
- B = # pairs in different clusters in both partitions
- Rand = (A + B) / Total number of pairs



K-means: Parametric or Non-parametric?

- Cluster models: means
- Data models?
- All clusters are spherical
 - Distance in any direction is the same
 - Cluster may be arbitrarily "big" to include outliers

EM Clustering

- Parametric solution
 - Model the data distribution
- Each cluster: Gaussian model

$$\mathcal{N}(\mu,\sigma)$$

Data: "mixture of models"

E-step: estimate cluster memberships

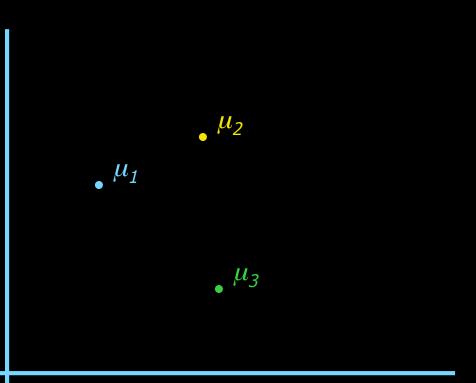
$$E\left[z^{t}|\mathcal{X},\mu,\sigma\right] = \frac{p(\mathbf{x}^{t} | C,\mu,\sigma) P(C)}{\sum_{j} p(\mathbf{x}^{t} | C_{j},\mu_{j},\sigma_{j}) P(C_{j})}$$

• M-step: maximize likelihood (clusters, params) $\mathcal{L}(\mu, \sigma \mid X) = P(X \mid \mu, \sigma)$

2/16/08

The GMM assumption

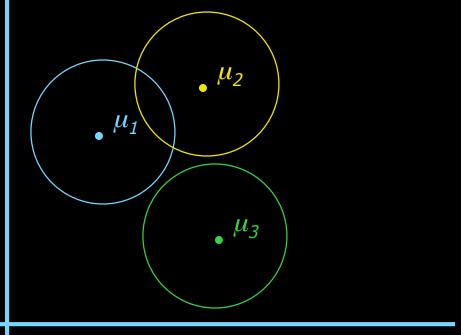
- There are k components. The i'th component is called ω_i
- Component ω_i has an associated mean vector μ_i



The GMM assumption

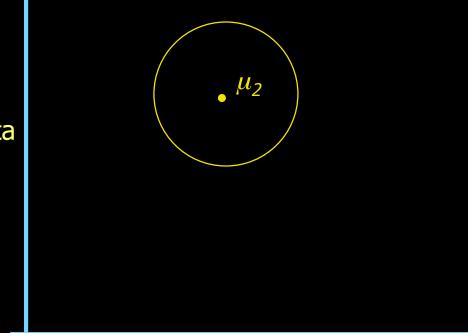
- There are k components. The i'th component is called ω_i
- Component ω_i has an associated mean vector μ_i
- Each component generates data from a Gaussian with mean μ_i and covariance matrix $\sigma^2 \mathbf{I}$

Assume that each datapoint is generated according to the following recipe:



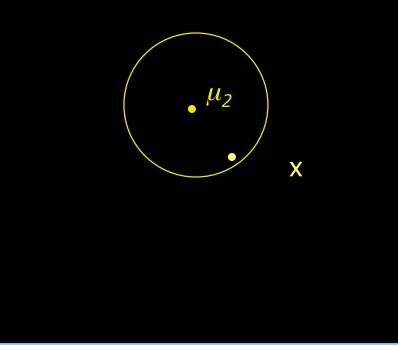
The GMM assumption

- There are k components. The i'th component is called ω_i
- Component ω_i has an associated mean vector μ_i
- Each component generates data from a Gaussian with mean μ_i and covariance matrix $\sigma^2 \mathbf{I}$
- Assume that each datapoint is generated according to the following recipe:
- 1. Pick a component at random. Choose component i with probability $P(\omega_i)$.



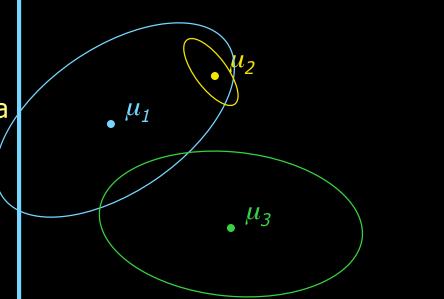
The GMM assumption

- There are k components. The i'th component is called ω_i
- Component ω_i has an associated mean vector μ_i
- Each component generates data from a Gaussian with mean μ_i and covariance matrix $\sigma^2 \mathbf{I}$
- Assume that each datapoint is generated according to the following recipe:
- 1. Pick a component at random. Choose component i with probability $P(\omega_i)$.
- 2. Datapoint ~ $N(\mu_{\mu} \sigma^2 \mathbf{I})$ 2/16/08



The General GMM assumption

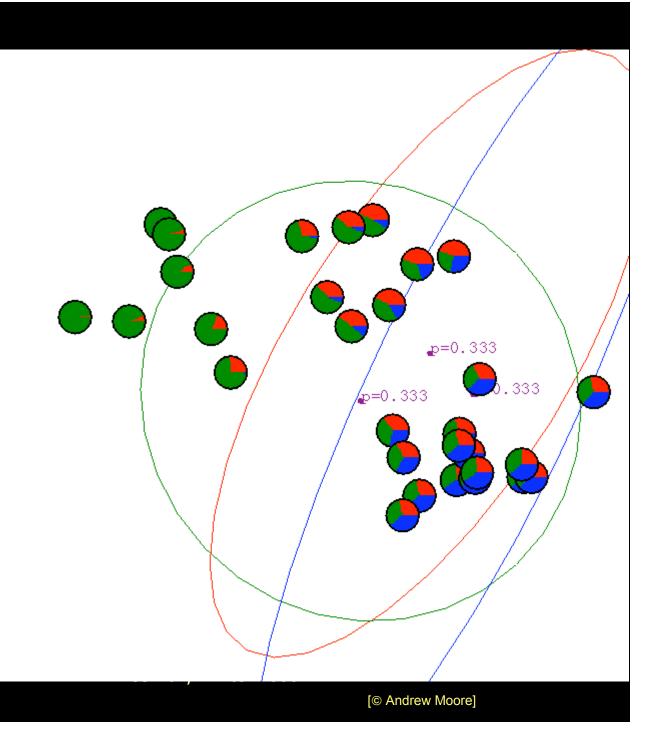
- There are k components. The i'th component is called ω_i
- Component ω_i has an associated mean vector μ_i
- Each component generates data from a Gaussian with mean μ_i and covariance matrix Σ_i
- Assume that each datapoint is generated according to the following recipe:
- 1. Pick a component at random. Choose component i with probability $P(\omega_i)$.
- 2. Datapoint ~ $N(\mu_i, \Sigma_i)$



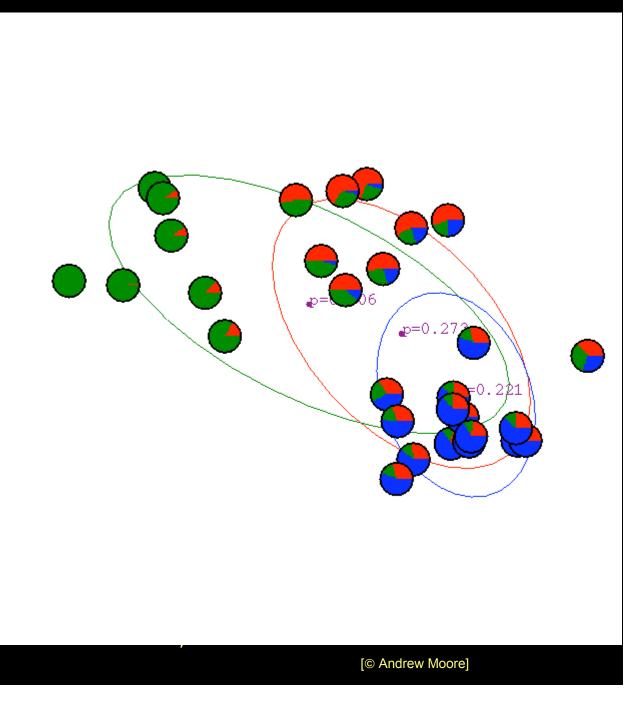
EM in action

<u>http://www.the-wabe.com/notebook/em-algorithm.html</u>

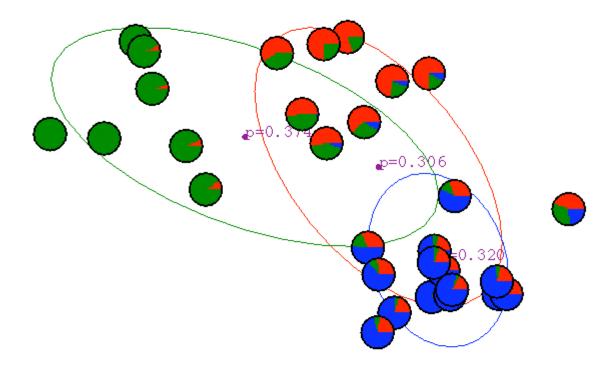
Gaussian Mixture Example: Start



After first iteration



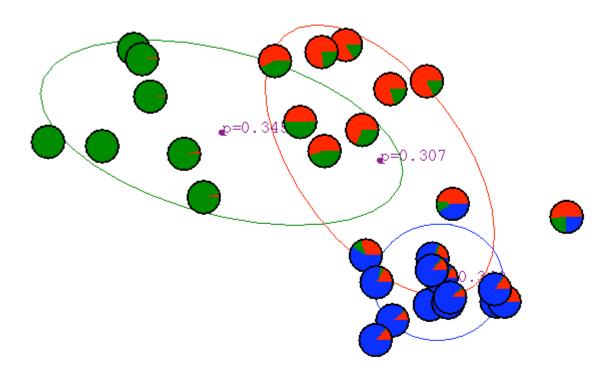
After 2nd iteration



2/16/08

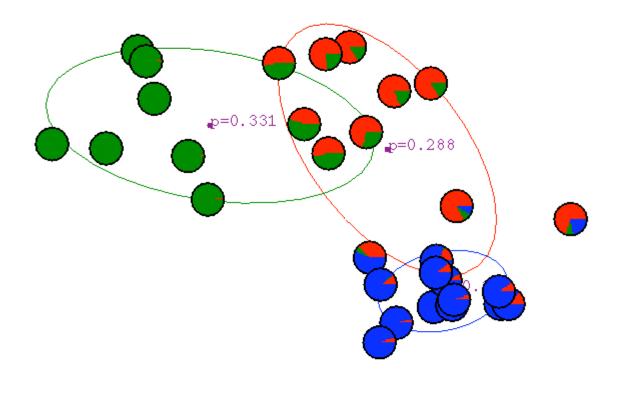
[© Andrew Moore]

After 3rd iteration

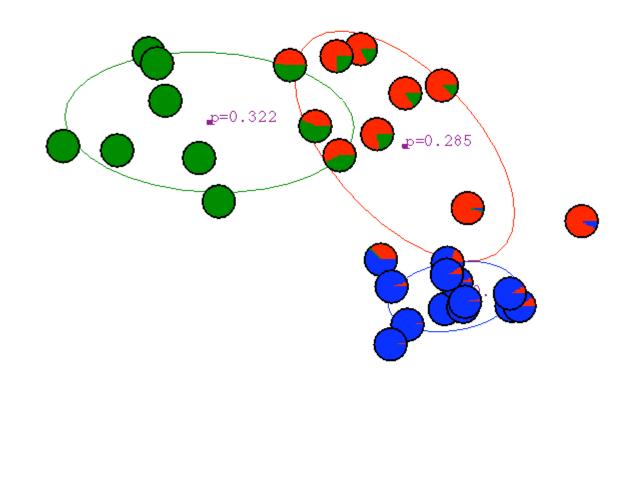


[© Andrew Moore]

After 4th iteration



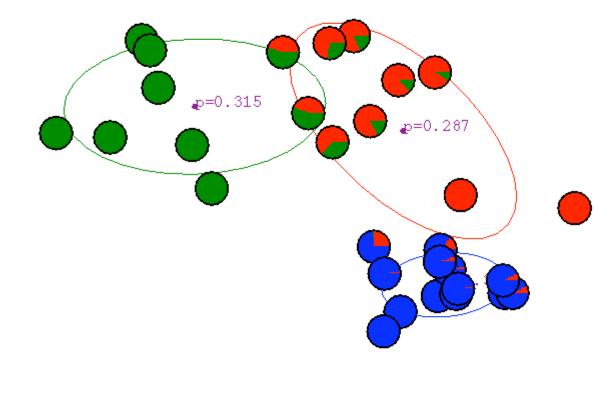
After 5th iteration



2/16/08

[© Andrew Moore]

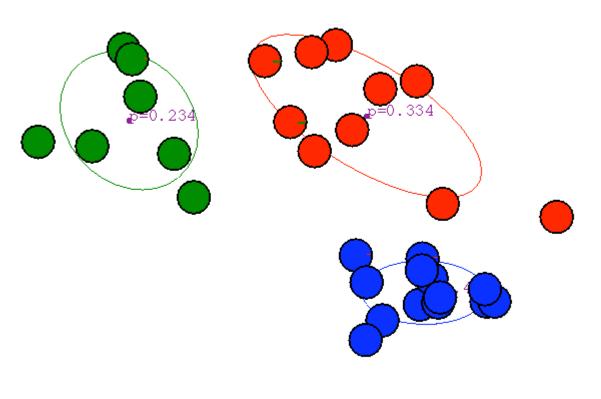
After 6th iteration



2/16/08

[© Andrew Moore]

After 20th iteration



[© Andrew Moore]

EM Benefits

- Model actual data distribution, not just centers
- Get probability of membership in each cluster, not just distance
- Clusters do not need to be "round"

EM Issues?

- Local optima
- How long will it take?
- How many clusters?
- Evaluation

Summary: Key Points for Today

- Unsupervised Learning
 - Why? How?
- K-means Clustering
 - Iterative
 - Sensitive to initialization
 - Non-parametric
 - Local optimum
 - Rand Index
- EM Clustering
 - Iterative
 - Sensitive to initialization
 - Parametric
 - Local optimum

Next Time

- Reinforcement Learning Robots! (read Ch. 16.1-16.5)
- Reading questions posted on website