
2/23/08 CS 461, Winter 2008 1

CS 461: Machine Learning
Lecture 8

Dr. Kiri Wagstaff
kiri.wagstaff@calstatela.edu

2/23/08 CS 461, Winter 2008 2

Plan for Today

 Review Clustering

 Reinforcement Learning
 How different from supervised, unsupervised?

 Key components
 How to learn

 Deterministic
 Nondeterministic

 Homework 4 Solution

2/23/08 CS 461, Winter 2008 3

Review from Lecture 7

 Unsupervised Learning
 Why? How?

 K-means Clustering
 Iterative
 Sensitive to initialization
 Non-parametric
 Local optimum
 Rand Index

 EM Clustering
 Iterative
 Sensitive to initialization
 Parametric
 Local optimum

2/23/08 CS 461, Winter 2008 4

Reinforcement Learning

Chapter 16

2/23/08 CS 461, Winter 2008 5

What is Reinforcement Learning?

 Learning from interaction
 Goal-oriented learning
 Learning about, from, and while interacting

with an external environment
 Learning what to do—how to map situations

to actions—so as to maximize a numerical
reward signal

[R. S. Sutton and A. G. Barto]

2/23/08 CS 461, Winter 2008 6

Supervised Learning

Supervised Learning
SystemInputs Outputs

Training Info = desired (target) outputs

Error = (target output – actual output)

[R. S. Sutton and A. G. Barto]

2/23/08 CS 461, Winter 2008 7

Reinforcement Learning

RL
SystemInputs Outputs (“actions”)

Training Info = evaluations (“rewards” / “penalties”)

Objective: get as much reward as possible

[R. S. Sutton and A. G. Barto]

2/23/08 CS 461, Winter 2008 8

Key Features of RL

 Learner is not told which actions to take
 Trial-and-Error search
 Possibility of delayed reward

 Sacrifice short-term gains for greater long-term gains

 The need to explore and exploit
 Considers the whole problem of a goal-directed

agent interacting with an uncertain environment

[R. S. Sutton and A. G. Barto]

2/23/08 CS 461, Winter 2008 9

Complete Agent (Learner)
 Temporally situated
 Continual learning and planning
 Object is to affect the environment
 Environment is stochastic and uncertain

Environment

actionstate

reward
Agent

[R. S. Sutton and A. G. Barto]

2/23/08 CS 461, Winter 2008 10

Elements of an RL problem

 Policy: what to do
 Reward: what is good
 Value: what is good because it predicts reward
 Model: what follows what

Policy

Reward
Value

Model of
environment

[R. S. Sutton and A. G. Barto]

2/23/08 CS 461, Winter 2008 11

Some Notable RL Applications

 TD-Gammon: Tesauro

 world’s best backgammon program

 Elevator Control: Crites & Barto

 high performance down-peak elevator controller

 Inventory Management: Van Roy, Bertsekas, Lee, & Tsitsiklis

 10–15% improvement over industry standard methods

 Dynamic Channel Assignment: Singh & Bertsekas, Nie &
Haykin

 high performance assignment of radio channels to mobile
telephone calls

[R. S. Sutton and A. G. Barto]

2/23/08 CS 461, Winter 2008 12

TD-Gammon

Start with a random network
Play very many games against self
Learn a value function from this simulated experience

This produces arguably the best player in the world

Action selection
by 2–3 ply search

Tesauro, 1992–1995

[R. S. Sutton and A. G. Barto]

2/23/08 CS 461, Winter 2008 13

The Agent-Environment Interface

!

Agent and environment interact at discrete time steps: t = 0,1, 2,K

 Agent observes state at step t : s
t
" S

 produces action at step t : a
t
" A(s

t
)

 gets resulting reward : r
t+1 " #

 and resulting next state : s
t+1

t
. . . st a

rt +1 st +1
t +1a

rt +2 st +2
t +2a

rt +3 st +3 . . .
t +3a

[R. S. Sutton and A. G. Barto]

2/23/08 CS 461, Winter 2008 14

Elements of an RL problem

 st : State of agent at time t
 at: Action taken at time t
 In st, action at is taken, clock ticks and reward

rt+1 is received and state changes to st+1

 Next state prob: P (st+1 | st , at)
 Reward prob: p (rt+1 | st , at)
 Initial state(s), goal state(s)
 Episode (trial) of actions from initial state to

goal

[Alpaydin 2004 © The MIT Press]

2/23/08 CS 461, Winter 2008 15

Policy at step t , !
t

:

 a mapping from states to action probabilities

 !
t
(s, a) = probability that a

t
= a when s

t
= s

The Agent Learns a Policy

 Reinforcement learning methods specify how the agent
changes its policy as a result of experience.

 Roughly, the agent’s goal is to get as much reward as it
can over the long run.

[R. S. Sutton and A. G. Barto]

2/23/08 CS 461, Winter 2008 16

Getting the Degree of Abstraction Right

 Time: steps need not refer to fixed intervals of real time.
 Actions:

 Low level (e.g., voltages to motors)
 High level (e.g., accept a job offer)
 “Mental” (e.g., shift in focus of attention), etc.

 States:
 Low-level “sensations”
 Abstract, symbolic, based on memory, or subjective

 e.g., the state of being “surprised” or “lost”

 The environment is not necessarily unknown to the agent,
only incompletely controllable

 Reward computation is in the agent’s environment
because the agent cannot change it arbitrarily

[R. S. Sutton and A. G. Barto]

2/23/08 CS 461, Winter 2008 17

Goals and Rewards

 Goal specifies what we want to achieve,
not how we want to achieve it
 “How” = policy

 Reward: scalar signal
 Surprisingly flexible

 The agent must be able to measure success:
 Explicitly
 Frequently during its lifespan

[R. S. Sutton and A. G. Barto]

2/23/08 CS 461, Winter 2008 18

Returns

Suppose the sequence of rewards after step t is :

 r
t+1, rt+ 2 , r

t+ 3, K

What do we want to maximize?

In general,

we want to maximize the expected return, E R
t{ }, for each step t.

Episodic tasks: interaction breaks naturally into
episodes, e.g., plays of a game, trips through a maze.

R
t
= r

t+1 + rt+2 +L + r
T
,

where T is a final time step at which a terminal state is
reached, ending an episode.

[R. S. Sutton and A. G. Barto]

2/23/08 CS 461, Winter 2008 19

Returns for Continuing Tasks

Continuing tasks: interaction does not have natural
episodes.

Discounted return:

 R
t
= r

t+1
+! r

t+ 2
+ ! 2

r
t+3
+L = ! k

r
t+ k+1

,
k =0

"

#

where ! , 0 $! $ 1, is the discount rate.

shortsighted 0 !" # 1 farsighted

[R. S. Sutton and A. G. Barto]

2/23/08 CS 461, Winter 2008 20

An Example

Avoid failure: the pole falling beyond
a critical angle or the cart hitting end of
track.

reward = +1 for each step before failure

! return = number of steps before failure

As an episodic task where episode ends upon failure:

As a continuing task with discounted return:
reward = !1 upon failure; 0 otherwise

" return = !# k , for k steps before failure

In either case, return is maximized by
avoiding failure for as long as possible.

[R. S. Sutton and A. G. Barto]

2/23/08 CS 461, Winter 2008 21

Another Example

Get to the top of the hill
as quickly as possible.

reward = !1 for each step where not at top of hill

" return = ! number of steps before reaching top of hill

Return is maximized by minimizing
number of steps reach the top of the hill.

[R. S. Sutton and A. G. Barto]

2/23/08 CS 461, Winter 2008 22

Markovian Examples

Robot navigation Settlers of Catan
 State does contain

 board layout
 location of all

settlements and cities
 your resource cards
 your development cards
 Memory of past

resources acquired by
opponents

 State does not contain:
 Knowledge of opponents’

development cards
 Opponent’s internal

development plans

[R. S. Sutton and A. G. Barto]

2/23/08 CS 461, Winter 2008 23

Markov Decision Processes

 If an RL task has the Markov Property, it is a
Markov Decision Process (MDP)

 If state, action sets are finite, it is a finite MDP
 To define a finite MDP, you need:

 state and action sets
 one-step “dynamics” defined by transition probabilities:

 reward probabilities:

P
s ! s

a = Pr s
t +1 = ! s s

t
= s, a

t
= a{ } for all s, ! s "S, a "A(s).

R
s ! s

a = E r
t +1 s

t
= s, a

t
= a, s

t +1 = ! s { } for all s, ! s "S, a"A(s).

[R. S. Sutton and A. G. Barto]

2/23/08 CS 461, Winter 2008 24

Recycling Robot

An Example Finite MDP

 At each step, robot has to decide whether it should
 (1) actively search for a can,
 (2) wait for someone to bring it a can, or
 (3) go to home base and recharge.

 Searching is better but runs down the battery; if runs out of
power while searching, has to be rescued (which is bad).

 Decisions made on basis of current energy level: high, low.
 Reward = number of cans collected

[R. S. Sutton and A. G. Barto]

2/23/08 CS 461, Winter 2008 25

Recycling Robot MDP

S = high ,low{ }

A(high) = search , wait{ }

A(low) = search ,wait, recharge{ }

R
search

= expected no. of cans while searching

R
wait

= expected no. of cans while waiting

 Rsearch > Rwait

[R. S. Sutton and A. G. Barto]

2/23/08 CS 461, Winter 2008 26

Example: Drive a car

 States?
 Actions?
 Goal?
 Next-state probs?
 Reward probs?

2/23/08 CS 461, Winter 2008 27

Value Functions

State - value function for policy ! :

V
!
(s) = E! R

t
s
t

= s{ } = E! " k
r
t+k +1 s

t
= s

k =0

#

$
%
&
'

(
)
*

Action- value function for policy ! :

Q
!
(s, a) = E! Rt st = s, at = a{ } = E! " k

rt+ k+1 st = s,at = a
k= 0

#

$
%
&
'

(
)
*

 The value of a state = expected return starting
from that state; depends on the agent’s policy:

 The value of taking an action in a state under
policy π = expected return starting from that
state, taking that action, and then following π :

[R. S. Sutton and A. G. Barto]

2/23/08 CS 461, Winter 2008 28

Bellman Equation for a Policy π

R
t
= r

t+1 + ! rt+2 +!
2
r
t+ 3 +!

3
r
t+ 4L

= r
t+1 + ! r

t+2 + ! rt+3 + !
2

r
t+ 4L()

= r
t+1 + ! Rt+1

The basic idea:

So:

!

V
"
(s) = E" R

t
s
t
= s{ }

= E" r
t+1 + #V "

s
t+1() st = s{ }

Or, without the expectation operator:
V
!
(s) = ! (s, a) P

s " s

a

R
s " s

a

+ #V
!
(" s)[]

" s

$
a

$

[R. S. Sutton and A. G. Barto]

2/23/08 CS 461, Winter 2008 29

Golf

 State is ball location
 Reward of –1 for each stroke until the ball is in the hole
 Value of a state?
 Actions:

 putt (use putter)
 driver (use driver)

 putt succeeds anywhere on the green

[R. S. Sutton and A. G. Barto]

2/23/08 CS 461, Winter 2008 30

! " # ! if and only if V
!
(s) " V

!
(s) for all s $S

Optimal Value Functions

 For finite MDPs, policies can be partially ordered:

 Optimal policy = π *
 Optimal state-value function:

 Optimal action-value function:

V
!
(s) = max

"
V
"
(s) for all s #S

Q
!
(s, a) = max

"
Q

"
(s, a) for all s #S and a #A(s)

This is the expected return for taking action a in state s
and thereafter following an optimal policy.

[R. S. Sutton and A. G. Barto]

2/23/08 CS 461, Winter 2008 31

Optimal Value Function for Golf

 We can hit the ball farther with driver than
with putter, but with less accuracy

 Q*(s,driver) gives the value of using driver
first, then using whichever actions are best

[R. S. Sutton and A. G. Barto]

2/23/08 CS 461, Winter 2008 32

Why Optimal State-Value Functions are Useful

V
!

V
!

Any policy that is greedy with respect to is an optimal policy.

Therefore, given , one-step-ahead search produces the
long-term optimal actions.

[R. S. Sutton and A. G. Barto]

Given , the agent does not even
have to do a one-step-ahead search:

Q
*

!
"
(s) = argmax

a#A (s)
Q

"
(s, a)

2/23/08 CS 461, Winter 2008 33

Summary so far…

 Agent-environment
interaction
 States
 Actions
 Rewards

 Policy: stochastic rule for
selecting actions

 Return: the function of future
rewards agent tries to
maximize

 Episodic and continuing tasks
 Markov Decision Process

 Transition probabilities
 Expected rewards

 Value functions
 State-value fn for a policy
 Action-value fn for a policy
 Optimal state-value fn
 Optimal action-value fn

 Optimal value functions
 Optimal policies
 Bellman Equation

[R. S. Sutton and A. G. Barto]

2/23/08 CS 461, Winter 2008 34

 Environment, P (st+1 | st , at), p (rt+1 | st , at), is
known

 There is no need for exploration
 Can be solved using dynamic programming
 Solve for

 Optimal policy

Model-Based Learning

!

V
*
s
t() =max

a
t

E r
t+1[] + " P s

t+1 | st ,at()
s
t+1

V
*
s
t+1()

$

%
& &

'

(
))

!

" * s
t() = arg max

a
t

E r
t+1 | s

t
,a

t[] + # P s
t+1 | s

t
,a

t()
s
t+1

$ V
*
s
t+1()

%

&
' '

(

)
* *

[Alpaydin 2004 © The MIT Press]

2/23/08 CS 461, Winter 2008 35

Value Iteration

[Alpaydin 2004 © The MIT Press]

2/23/08 CS 461, Winter 2008 36

Policy Iteration

[Alpaydin 2004 © The MIT Press]

2/23/08 CS 461, Winter 2008 37

Temporal Difference Learning

 Environment, P (st+1 | st , at), p (rt+1 | st , at), is
not known; model-free learning

 There is need for exploration to sample from
P (st+1 | st , at) and p (rt+1 | st , at)

 Use the reward received in the next time step to
update the value of current state (action)

 The temporal difference between the value of
the current action and the value discounted
from the next state

[Alpaydin 2004 © The MIT Press]

2/23/08 CS 461, Winter 2008 38

Exploration Strategies

 ε-greedy:
 With prob ε,choose one action at random uniformly
 Choose the best action with pr 1-ε

 Probabilistic (softmax: all p > 0):

 Move smoothly from exploration/exploitation
 Annealing: gradually reduce T

()
()

()! =

=
A

1
exp

exp
|

b
b,sQ

a,sQ
saP

() ()[]
()[]! =

=
A

1
exp

exp
|

b
T/b,sQ

T/a,sQ
saP

[Alpaydin 2004 © The MIT Press]

2/23/08 CS 461, Winter 2008 39

Deterministic Rewards and Actions

 Deterministic: single possible reward and next
state

 Used as an update rule (backup)

 Updates happen only after reaching the reward
(then are “backed up”)

Starting at zero, Q values increase, never decrease

() ()
111

1

max +++
+

!+= tt
a

ttt a,sQra,sQ
t

() ()
111

1

max +++
+

!+" tt
a

ttt a,sQ̂ra,sQ̂
t

[Alpaydin 2004 © The MIT Press]

2/23/08 CS 461, Winter 2008 40

Consider the value of action marked by ‘*’:
If path A is seen first, Q(*)=0.9*max(0,81)=73
Then B is seen, Q(*)=0.9*max(100,81)=90

Or,
If path B is seen first, Q(*)=0.9*max(100,0)=90
Then A is seen, Q(*)=0.9*max(100,81)=90

Q values increase but never decrease

γ=0.9

[Alpaydin 2004 © The MIT Press]

2/23/08 CS 461, Winter 2008 41

() () () ()()
ttttt
sVsVrsVsV !"+#+$ ++ 11

Nondeterministic Rewards and Actions

 When next states and rewards are
nondeterministic (there is an opponent or
randomness in the environment), we keep
averages (expected values) instead as
assignments

 Q-learning (Watkins and Dayan, 1992):

 Learning V (TD-learning: Sutton, 1988)

() () () ()!
"
#

$
%
& '(+)+* +++

+

tttt
a

ttttt a,sQ̂a,sQ̂ra,sQ̂a,sQ̂
t

111
1

max

backup

[Alpaydin 2004 © The MIT Press]

2/23/08 CS 461, Winter 2008 42

Q-learning

[Alpaydin 2004 © The MIT Press]

2/23/08 CS 461, Winter 2008 43

TD-Gammon

Start with a random network
Play very many games against self
Learn a value function from this simulated experience

Action selection
by 2–3 ply search

Tesauro, 1992–1995

[R. S. Sutton and A. G. Barto]

-1 pt/40 games1 expert1,500,000TDG 2.1

-7 pts/38 games5 experts800,000TDG 2.0

-13 pts/51 games3 experts300,000TDG 1.0

ResultsOpponentsTraining
games

Program

2/23/08 CS 461, Winter 2008 44

Summary: Key Points for Today

 Reinforcement Learning
 How different from supervised, unsupervised?

 Key components
 Actions, states, transition probs, rewards
 Markov Decision Process
 Episodic vs. continuing tasks
 Value functions, optimal value functions

 Learn: policy (based on V, Q)
 Model-based: value iteration, policy iteration
 TD learning

 Deterministic: backup rules (max)
 Nondeterministic: TD learning, Q-learning (running avg)

2/23/08 CS 461, Winter 2008 45

Homework 4 Solution

2/23/08 CS 461, Winter 2008 46

Next Time

 Ensemble Learning
(read Ch. 15.1-15.5)

 Reading questions are posted on website

