2/23/08

CS 461: Machine Learning
Lecture 8

Dr. Kiri Wagstaff

kiri.wagstaff@caIstate{l{ai,_egly“”""'".ﬂ

— g

=

CS 461, Winter 2008




Plan for Today

Review Clustering

Reinforcement Learning
How different from supervised, unsupervised?

Key components

How to learn
Deterministic
Nondeterministic

Homework 4 Solution

2/23/08 CS 461, Winter 2008




Review from Lecture 7

= Unsupervised Learning
Why? How?

= K-means Clustering
Iterative
Sensitive to initialization
Non-parametric

Local optimum
Rand Index

= EM Clustering
Iterative
Sensitive to initialization
Parametric
Local optimum

2/23/08 CS 461, Winter 2008




Reinforcement Learning

Chapter 16

2/23/08 CS 461, Winter 2008




What is Reinforcement Learning?

Learning from interaction
Goal-oriented learning

Learning about, from, and while interacting
with an external environment

Learning what to do—how to map situations
to actions—so as to maximize a numerical
reward signal

2/23/08 CS 461, Winter 2008 [R. S. Sutton and A. G. Barto] 5




Supervised Learning

Training Info = desired (target) outputs

}

Supervised Learning
— ’ Outputs

Error = (target output — actual output)

2/23/08 CS 461, Winter 2008 [R. S. Sutton and A. G. Barto]




Reinforcement Learning

Training Info = evaluations (“rewards” / ““penalties™)

}

RL ’ Outputs (“actions”)

Objective: get as much reward as possible

2/23/08 CS 461, Winter 2008 [R. S. Sutton and A. G. Barto]




Key Features of RL

Learner is not told which actions to take
Trial-and-Error search
Possibility of delayed reward

Sacrifice short-term gains for greater long-term gains
The need to explore and exploit

Considers the whole problem of a goal-directed
agent interacting with an uncertain environment

2/23/08 CS 461, Winter 2008 [R. S. Sutton and A. G. Barto] 8




Complete Agent (Learner)

= Temporally situated

= Continual learning and planning

= QObject is to affect the environment

= Environment is stochastic and uncertain

action

2/23/08 CS 461, Winter 2008 [R. S. Sutton and A. G. Barto] )




Elements of an RL problem

Model of
environment

Policy: what to do

Reward: what is good

Value: what is good because it predicts reward
Model: what follows what

2/23/08 CS 461, Winter 2008 [R. S. Sutton and A. G. Barto] 10




Some Notable RL Applications

TD-Gammon: Tesauro
world’s best backgammon program

Elevator Control: crites & Barto
high performance down-peak elevator controller

Inventory Management: van Roy, Bertsekas, Lee, & Tsitsiklis

10-15% improvement over industry standard methods
Dynamic Channel Assignment: singh & Bertsekas, Nie &
Haykin

high performance assignment of radio channels to mobile
telephone calls

2/23/08 CS 461, Winter 2008 [R. S. Sutton and A. G. Barto] 11




TD-Gammon

Tesauro, 1992—-1995

predicted probability

‘\\w?‘,ite pieces move of winning, V;

\ counterclockwise

|
TDerror, v, - vV, —(/)

- () -+ =) hidden units (40-80)
' black pieces

" move clockwise e
- backgammon position (198 input units)

Action selection

Start with a random network by 2-3 ply search

Play very many games against self
Learn a value function from this simulated experience

This produces arguably the best player in the world

2/23/08 CS 461, Winter 2008 [R. S. Sutton and A. G. Barto] 12




The Agent-Environment Interface

_>

+; | Environment

Agent and environment interact at discrete time steps: t=0,1,2,...
Agent observes state at stepz: s, €S
produces action at step 7: a, € A(s,)
gets resulting reward: r,, ENR

and resulting next state: s

r+1

r r
t+1 P42 /0 rt+3©
S ® St+1 ® St+2 ® St 43
{Daf " \'"a,, a 43

2/23/08 CS 461, Winter 2008 [R. S. Sutton and A. G. Barto] 13




Elements of an RL problem

S; : State of agent at time ¢
a,. Action taken at time ¢

In s, action a, is taken, clock ticks and reward
r..1 IS received and state changes to s;, ,

Next state prob: P (s, | S;, a;)
Reward prob: p (ry.1 | S;, a;)
Initial state(s), goal state(s)

Episode (trial) of actions from initial state to
goal

2/23/08 CS 461, Winter 2008  [Alpaydin 2004 © The MIT Press] 14




The Agent Learns a Policy

Policy at step ¢, 7, :
a mapping from states to action probabilities

7. (s,a) = probability that a, = a when s, = s

Reinforcement learning methods specify how the agent
changes its policy as a result of experience.

Roughly, the agent’s goal is to get as much reward as it
can over the long run.

2/23/08 CS 461, Winter 2008 [R. S. Sutton and A. G. Barto] 15




Getting the Degree of Abstraction Right

Time: steps need not refer to fixed intervals of real time.
Actions:

Low level (e.q., voltages to motors)

High level (e.g., accept a job offer)

“Mental” (e.g., shift in focus of attention), etc.
States:

Low-level “sensations”

Abstract, symbolic, based on memory, or subjective
e.g., the state of being “surprised” or “lost”

The environment is not necessarily unknown to the agent,
only incompletely controllable

Reward computation is in the agent’s environment
because the agent cannot change it arbitrarily

2/23/08 CS 461, Winter 2008 [R. S. Sutton and A. G. Barto] 16




Goals and Rewards

= Goal specifies what we want to achieve,
not how we want to achieve it

“How"” = policy
= Reward: scalar signal
Surprisingly flexible

7 * The agent must be able to measure success:
Explicitly
Frequently during its lifespan

2/23/08 CS 461, Winter 2008 [R. S. Sutton and A. G. Barto] 17




Returns

Suppose the sequence of rewards after step 71is:
’;+l’ rt+2 ’ 7;+3’ te

What do we want to maximize?

In general,

we want to maximize the expected return, E{ } for each step .

Episodic tasks: interaction breaks naturally into
episodes, e.g., plays of a game, trips through a maze.

R t+1+rt+2+ .+rT’

where T 1s a final time step at which a terminal state 1s
reached, ending an episode.

2/23/08 CS 461, Winter 2008 [R. S. Sutton and A. G. Barto] 18




Returns for Continuing Tasks

Continuing tasks: interaction does not have natural
episodes.

Discounted return:

2 ,
R =l +Y T 4V s+ = > 7',

t+k+1°
k =0

where y,0 <y =< 1, is the discount rate

shortsighted 0 <=y — 1 farsighted

2/23/08 CS 461, Winter 2008 [R. S. Sutton and A. G. Barto] 19




An Example

Avoid failure: the pole falling beyond

a critical angle or the cart hitting end of

track.
[

As an episodic task where episode ends upon failure:
reward = +1 for each step before failure

= return = number of steps before failure

As a continuing task with discounted return:
reward = -1 upon failure; O otherwise

= return = -v", for k steps before failure

In either case, return is maximized by

avoiding failure for as long as possible.
2/23/08 CS 461, Winter 2008 [R. S. Sutton and A. G. Barto] 20




Another Example

Get to the top of the hill
as quickly as possible.

reward = —1 for each step where not at top of hill

= return = - number of steps before reaching top of hill

Return 1s maximized by minimizing
number of steps reach the top of the hill.

2/23/08 CS 461, Winter 2008 [R. S. Sutton and A. G. Barto] 21




Markovian Examples

Robot navigation Settlers of Catan
= State does contain

board layout

location of all
settlements and cities

your resource cards
your development cards

Memory of past
resources acquired by
opponents

= State does not contain:

Knowledge of opponents’
development cards

Opponent’s internal
development plans

2/23/08 CS 461, Winter 2008 [R. S. Sutton and A. G. Barto] 22




Markov Decision Processes

If an RL task has the Markov Property, it is a
Markov Decision Process (MDP)

If state, action sets are finite, it is a finite MDP

To define a finite MDP, you need:

state and action sets
one-step “dynamics” defined by transition probabilities:

for all s,s" €S, a EA(s).

for all s,s" €S, a€A(s).

2/23/08 CS 461, Winter 2008 [R. S. Sutton and A. G. Barto] 23




An Example Finite MDP

Recycling Robot

At each step, robot has to decide whether it should
(1) actively search for a can,
(2) wait for someone to bring it a can, or
(3) go to home base and recharge.

Searching is better but runs down the battery; if runs out of
power while searching, has to be rescued (which is bad).

Decisions made on basis of current energy level: high, 1low.
Reward = number of cans collected

2/23/08 CS 461, Winter 2008 [R. S. Sutton and A. G. Barto] 24




Recycling Robot MDP

S ={high, low} R*****" = expected no. of cans while searching
A(high) = {search , wait} R"™* = expected no. of cans while waiting

A(low) = {search,wait, recharge} Rseareh 5 Rvait

w'all.

R search
/ m\ AR

.0 rech arge / \4/

'hlgh =1 low :

/’\/

\ Narch

, R search —(1 R Search

2/23/08 CS 461, Winter 2008 [R. S. Sutton and A. G. Barto] 25




Example: Drive a car

States?

Actions?

Goal?

Next-state probs?
Reward probs?

2/23/08 CS 461, Winter 2008




Value Functions

= The value of a state = expected return starting
from that state; depends on the agent’s policy:

State - value function for policyr :
VE(S) - En{Rr | St =S} - Eﬂ{zyk’;%ﬂ 5 = S}
k =0

= The value of taking an action in a state under
policy # = expected return starting from that
state, taking that action, and then following 7 :

Action- value function for policyr :

Q" (s,a) = EH{RI s, =s.q =a} = E, {E)/krmm s, = 5,4, =a}
k=0

2/23/08 CS 461, Winter 2008 [R. S. Sutton and A. G. Barto] 27




Bellman Equation for a Policy &

The basic 1dea:
R t+1+y r+2 y t+3+y
t+1+)/( t+2+)/t+3 }/ l"

+ YR,

r+1

Or, without the expectation operator:

V()= Y als.a)p PR +yV7(s)]

2/23/08 CS 461, Winter 2008 [R. S. Sutton and A. G. Barto] 28




State is ball location
Reward of —1 for each stroke until the ball is in the hole

= Value of a state?

= Actions:
putt (use putter)
driver (use driver)

= putt succeeds anywhere on the green

2/23/08 CS 461, Winter 2008 [R. S. Sutton and A. G. Barto] 29




Optimal Value Functions

= For finite MDPs, policies can be partially ordered:
n=x' ifandonlyif V™(s) = V" (s) forall s ES

= Optimal policy = & *

= Optimal state-value function:

V'(s)=max V" (s) forall s ES

= Optimal action-value function:
Q'(s,a)=max Q" (s,a) forall s €S and a EA(s)

This 1s the expected return for taking action a in state s
and thereafter following an optimal policy.

2/23/08 CS 461, Winter 2008 [R. S. Sutton and A. G. Barto] 30




Optimal Value Function for Golf

= We can hit the ball farther with driver than
with putter, but with less accuracy

= Q*(s,driver) gives the value of using driver
first, then using whichever actions are best

Q*(S,driver)

2/23/08 CS 461, Winter 2008 [R. S. Sutton and A. G. Barto] 31




Why Optimal State-Value Functions are Useful

Any policy that is greedy with respect to is an optimal policy.

Therefore, given , one-step-ahead search produces the
long-term optimal actions.

Given , the agent does not even
have to do a one-step-ahead search:

7 (s)=argmax Q (s, a)
acA(s)

2/23/08 CS 461, Winter 2008 [R. S. Sutton and A. G. Barto] 32




Summary so far...

Agent-environment Value functions

interaction State-value fn for a policy
Sta_teS Action-value fn for a policy
Actions Optimal state-value fn

Rewards Ootimal st o
Policy: stochastic rule for ptimal action-value n

selecting actions Optimal value functions

Return: the function of future = Optimal policies

rewards agent tries to Bellman Equation
maximize

Episodic and continuing tasks

Markov Decision Process
Transition probabilities
Expected rewards

2/23/08 CS 461, Winter 2008 [R. S. Sutton and A. G. Barto] 33




Model-Based Learning

Environment, P(S.1 | S;, a;), P (reet | 'S¢, @), 1S
known

There is no need for exploration
Can be solved using dynamic programming
Solve for

Optimal policy

b —
JT (sr)—argmax t+1|S a, +}’2P ¢+1|S Cl r+1)

a;

2/23/08 CS 461, Winter 2008  [Alpaydin 2004 © The MIT Press] 34




Value Iteration

Initialize V' (s) to arbitrary values
Repeat
For all se€ S
For all a € A

P(s'|s,a)V(s")

(2(‘5 (l)‘_E[ |S (l ‘I’ Z
‘ (5)  — l].](.‘l-}&a, (2 ( S ? a )
Until V' (s) converge

Scs

2/23/08 CS 461, Winter 2008  [Alpaydin 2004 © The MIT Press] 35




Policy Iteration

Initialize a policy « arbitrarily
Repeat

— )
o

Compute the values using =« by
solving the linear equations

V™ (s) = Elr|s,w(s)] +~ Zs’es P(s'|s,m(s))VT(s")
Improve the policy at each state

— arg maxq (E[r|s,a] + v Zq,g ¢ P(s']s,a)V7(s"))

2/23/08 CS 461, Winter 2008  [Alpaydin 2004 © The MIT Press] 36




Temporal Difference Learning

Environment, P(S.1 | S;, a;), P (reet | 'S¢, @), 1S
not known; model-free learning

There is need for exploration to sample from
P(Si1 | S, a)and p(ryq | S, a)

Use the reward received in the next time step to
update the value of current state (action)

The temporal difference between the value of
the current action and the value discounted
from the next state

2/23/08 CS 461, Winter 2008  [Alpaydin 2004 © The MIT Press] 37




Exploration Strategies

e-greedy:
With prob €,choose one action at random uniformly
Choose the best action with pr 1-€

Probabilistic (softmax: all p > 0):

Move smoothly from exploration/exploitation
Annealing: gradually reduce T

2/23/08 CS 461, Winter 2008  [Alpaydin 2004 © The MIT Press] 38




Deterministic Rewards and Actions

= Deterministic: single possible reward and next
state

Q(St’at )= Frop tY n;ax Q(St+1’at+1 )

t+1

= Used as an update rule (backup)

QA-(St’at )e rt+1 +Y n;llaX QA-(St+1’at+1 )

t+1

= Updates happen only after reaching the reward
(then are “backed up”)

Starting at zero, Q values increase, never decrease

2/23/08 CS 461, Winter 2008  [Alpaydin 2004 © The MIT Press] 39




7/ Then B is seen, O(*)=0.9*max(100,81)=90

If path B is seen first, Q(*)=0.9*max(100,0)=90
Then A is seen, Q(*)=0.9*max(100,81)=90
Q values increase but never decrease

2/23/08 CS 461, Winter 2008  [Alpaydin 2004 © The MIT Press] 40




Nondeterministic Rewards and Actions

= When next states and rewards are
nondeterministic (there is an opponent or
randomness in the environment), we keep
averages (expected values) instead as
assignments

7/ = Q-learning (Watkins and Dayan, 1992):

Q(St’at )e Q(Stiat )+ n(rt+1 + Ync}ax Q(St+17at+1

= |Learning V (TD-learning: Sutton, 1988)

2/23/08 CS 461, Winter 2008  [Alpaydin 2004 © The MIT Press] 41




Q-learning

Initialize all Q(s,a) arbitrarily
For all episodes
Initalize s
Repeat
Choose a using policy derived from @, e.d., e-greedy
Take action a, observe r and s’
Update Q(s,a):
Q(s.a) — Q(s,a) +n(r +ymax, Q(s',a") — Q(s,a))
/

S+ S

Until s is terminal state

2/23/08 CS 461, Winter 2008  [Alpaydin 2004 © The MIT Press] 42




TD-Gammon Tesauro, 1992—-1995

predicted probability
of winning, V,

- TN . .
\wmte pieces move
\ counterclockwise

TDerror, v, - vV, —(/)

. -,'.;__) hidden units (40-80)

" black pieces

" move clockwise - C

backgammon position (198 input units)

Action selection

Start with a random network
art with a random networ by 2-3 ply search

Play very many games against self
Learn a value function from this simulated experience

Program | Training Opponents | Results
games

TDG 1.0 | 300,000 3 experts -13 pts/51 games

TDG 2.0 | 800,000 5 experts -7 pts/38 games
TDG 2.1 | 1,500,000 | 1 expert -1 pt/40 games

2/23/08 CS 461, Winter 2008 [R. S. Sutton and A. G. Barto] 43




Summary: Key Points for Today

= Reinforcement Learning
How different from supervised, unsupervised?

= Key components
Actions, states, transition probs, rewards
Markov Decision Process
Episodic vs. continuing tasks
Value functions, optimal value functions

= |Learn: policy (based on V, Q)
Model-based: value iteration, policy iteration

TD learning
Deterministic: backup rules (max)
Nondeterministic: TD learning, Q-learning (running avg)

2/23/08 CS 461, Winter 2008 44




Homework 4 Solution

2/23/08 CS 461, Winter 2008




Next Time

= Ensemble Learning
(read Ch. 15.1-15.5)

= Reading questions are posted on website

2/23/08 CS 461, Winter 2008




