
2/23/08 CS 461, Winter 2008 1

CS 461: Machine Learning
Lecture 8

Dr. Kiri Wagstaff
kiri.wagstaff@calstatela.edu



2/23/08 CS 461, Winter 2008 2

Plan for Today

 Review Clustering

 Reinforcement Learning
 How different from supervised, unsupervised?

 Key components
 How to learn

 Deterministic
 Nondeterministic

 Homework 4 Solution



2/23/08 CS 461, Winter 2008 3

Review from Lecture 7

 Unsupervised Learning
 Why?  How?

 K-means Clustering
 Iterative
 Sensitive to initialization
 Non-parametric
 Local optimum
 Rand Index

 EM Clustering
 Iterative
 Sensitive to initialization
 Parametric
 Local optimum



2/23/08 CS 461, Winter 2008 4

Reinforcement Learning

Chapter 16



2/23/08 CS 461, Winter 2008 5

What is Reinforcement Learning?

 Learning from interaction
 Goal-oriented learning
 Learning about, from, and while interacting

with an external environment
 Learning what to do—how to map situations

to actions—so as to maximize a numerical
reward signal

[R. S. Sutton and A. G. Barto]



2/23/08 CS 461, Winter 2008 6

Supervised Learning

Supervised Learning 
SystemInputs Outputs

Training Info  =  desired (target) outputs

Error  =  (target output  –  actual output)

[R. S. Sutton and A. G. Barto]



2/23/08 CS 461, Winter 2008 7

Reinforcement Learning

RL
SystemInputs Outputs (“actions”)

Training Info  =  evaluations (“rewards” / “penalties”)

Objective:  get as much reward as possible

[R. S. Sutton and A. G. Barto]



2/23/08 CS 461, Winter 2008 8

Key Features of RL

 Learner is not told which actions to take
 Trial-and-Error search
 Possibility of delayed reward

 Sacrifice short-term gains for greater long-term gains

 The need to explore and exploit
 Considers the whole problem of a goal-directed

agent interacting with an uncertain environment

[R. S. Sutton and A. G. Barto]



2/23/08 CS 461, Winter 2008 9

Complete Agent (Learner)
 Temporally situated
 Continual learning and planning
 Object is to affect the environment
 Environment is stochastic and uncertain

  

Environment

actionstate

reward
Agent

[R. S. Sutton and A. G. Barto]



2/23/08 CS 461, Winter 2008 10

Elements of an RL problem

 Policy: what to do
 Reward: what is good
 Value: what is good because it predicts reward
 Model: what follows what

Policy

Reward
Value

Model of
environment

[R. S. Sutton and A. G. Barto]



2/23/08 CS 461, Winter 2008 11

Some Notable RL Applications

 TD-Gammon: Tesauro

 world’s best backgammon program

 Elevator Control: Crites & Barto

 high performance down-peak elevator controller

 Inventory Management: Van Roy, Bertsekas, Lee, & Tsitsiklis

 10–15% improvement over industry standard methods

 Dynamic Channel Assignment: Singh & Bertsekas, Nie &
Haykin

 high performance assignment of radio channels to mobile
telephone calls

[R. S. Sutton and A. G. Barto]



2/23/08 CS 461, Winter 2008 12

TD-Gammon

Start with a random network
Play very many games against self
Learn a value function from this simulated experience

This produces arguably the best player in the world

Action selection
by 2–3 ply search

Tesauro, 1992–1995

[R. S. Sutton and A. G. Barto]



2/23/08 CS 461, Winter 2008 13

The Agent-Environment Interface

  

! 

Agent and environment interact at discrete time steps:   t = 0,1, 2,K

     Agent observes state at step t :     s
t
" S

     produces action at step t :   a
t
" A(s

t
)

     gets resulting reward :     r
t+1 " #

     and resulting next state :   s
t+1

t
. . . st a

rt +1 st +1
t +1a

rt +2 st +2
t +2a

rt +3 st +3 . . .
t +3a

[R. S. Sutton and A. G. Barto]



2/23/08 CS 461, Winter 2008 14

Elements of an RL problem

 st : State of agent at time t
 at: Action taken at time t
 In st, action at is taken, clock ticks and reward

rt+1 is received and state changes to st+1

 Next state prob: P (st+1 | st , at )
 Reward prob: p (rt+1 | st , at )
 Initial state(s), goal state(s)
 Episode (trial) of actions from initial state to

goal

[Alpaydin 2004 © The MIT Press]



2/23/08 CS 461, Winter 2008 15

Policy at step t , !
t

:

               a mapping from states to action probabilities

               !
t
(s, a) =  probability that a

t
= a when s

t
= s

The Agent Learns a Policy

 Reinforcement learning methods specify how the agent
changes its policy as a result of experience.

 Roughly, the agent’s goal is to get as much reward as it
can over the long run.

[R. S. Sutton and A. G. Barto]



2/23/08 CS 461, Winter 2008 16

Getting the Degree of Abstraction Right

 Time: steps need not refer to fixed intervals of real time.
 Actions:

 Low level (e.g., voltages to motors)
 High level (e.g., accept a job offer)
 “Mental” (e.g., shift in focus of attention), etc.

 States:
 Low-level “sensations”
 Abstract, symbolic, based on memory, or subjective

 e.g., the state of being “surprised” or “lost”

 The environment is not necessarily unknown to the agent,
only incompletely controllable

 Reward computation is in the agent’s environment
because the agent cannot change it arbitrarily

[R. S. Sutton and A. G. Barto]



2/23/08 CS 461, Winter 2008 17

Goals and Rewards

 Goal specifies what we want to achieve,
not how we want to achieve it
 “How” = policy

 Reward: scalar signal
 Surprisingly flexible

 The agent must be able to measure success:
 Explicitly
 Frequently during its lifespan

[R. S. Sutton and A. G. Barto]



2/23/08 CS 461, Winter 2008 18

Returns

  

Suppose the sequence of rewards after step t is :

                         r
t+1, rt+ 2 , r

t+ 3, K

What do we want to maximize?

In general,  

we want to maximize the expected return,  E R
t{ },  for each step t.

Episodic tasks: interaction breaks naturally into
episodes, e.g., plays of a game, trips through a maze.

  
R
t
= r

t+1 + rt+2 +L + r
T
,

where T is a final time step at which a terminal state is
reached, ending an episode.

[R. S. Sutton and A. G. Barto]



2/23/08 CS 461, Winter 2008 19

Returns for Continuing Tasks

Continuing tasks: interaction does not have natural
episodes.

Discounted return:

  

            R
t
= r

t+1
+! r

t+ 2
+ ! 2

r
t+3
+L = ! k

r
t+ k+1

,
k =0

"

#

where ! , 0 $ ! $ 1, is the discount rate.

shortsighted  0 !" # 1  farsighted

[R. S. Sutton and A. G. Barto]



2/23/08 CS 461, Winter 2008 20

An Example

Avoid failure: the pole falling beyond
a critical angle or the cart hitting end of
track.

reward  = +1 for each step before failure

!   return =  number of steps before failure

As an episodic task where episode ends upon failure:

As  a continuing task with discounted return:
reward  = !1 upon failure;  0 otherwise

"   return =  !# k ,  for k steps before failure

In either case, return is maximized by 
avoiding failure for as long as possible.

[R. S. Sutton and A. G. Barto]



2/23/08 CS 461, Winter 2008 21

Another Example

Get to the top of the hill
as quickly as possible. 

reward  = !1 for each step where not at top of hill

"   return =  ! number of steps before reaching top of hill

Return is maximized by minimizing 
number of steps reach the top of the hill. 

[R. S. Sutton and A. G. Barto]



2/23/08 CS 461, Winter 2008 22

Markovian Examples

Robot navigation Settlers of Catan
 State does contain

 board layout
 location of all

settlements and cities
 your resource cards
 your development cards
 Memory of past

resources acquired by
opponents

 State does not contain:
 Knowledge of opponents’

development cards
 Opponent’s internal

development plans

[R. S. Sutton and A. G. Barto]



2/23/08 CS 461, Winter 2008 23

Markov Decision Processes

 If an RL task has the Markov Property, it is a
Markov Decision Process (MDP)

 If state, action sets are finite, it is a finite MDP
 To define a finite MDP, you need:

 state and action sets
 one-step “dynamics” defined by transition probabilities:

 reward probabilities:

P
s ! s 

a = Pr s
t +1 = ! s s

t
= s, a

t
= a{ }   for all s, ! s "S, a "A(s).

R
s ! s 

a = E r
t +1 s

t
= s, a

t
= a, s

t +1 = ! s { }   for all s, ! s "S, a"A(s).

[R. S. Sutton and A. G. Barto]



2/23/08 CS 461, Winter 2008 24

Recycling Robot 

An Example Finite MDP

 At each step, robot has to decide whether it should
 (1) actively search for a can,
 (2) wait for someone to bring it a can, or
 (3) go to home base and recharge.

 Searching is better but runs down the battery; if runs out of
power while searching, has to be rescued (which is bad).

 Decisions made on basis of current energy level: high, low.
 Reward = number of cans collected

[R. S. Sutton and A. G. Barto]



2/23/08 CS 461, Winter 2008 25

Recycling Robot MDP

  

S = high ,low{ }

A(high) = search , wait{ }

A(low) = search ,wait, recharge{ }   

R
search

=  expected no. of cans while searching

R
wait

=  expected no. of cans while waiting

                     Rsearch > Rwait

[R. S. Sutton and A. G. Barto]



2/23/08 CS 461, Winter 2008 26

Example: Drive a car

 States?
 Actions?
 Goal?
 Next-state probs?
 Reward probs?



2/23/08 CS 461, Winter 2008 27

Value Functions

State - value function for policy ! :

V
!
(s) = E! R

t
s
t

= s{ } = E! " k
r
t+k +1 s

t
= s

k =0

#

$
% 
& 
' 

( 
) 
* 

Action- value function for policy ! :

Q
!
(s, a) = E! Rt st = s, at = a{ } = E! " k

rt+ k+1 st = s,at = a
k= 0

#

$
% 
& 
' 

( 
) 
* 

 The value of a state = expected return starting
from that state; depends on the agent’s policy:

 The value of taking an action in a state under
policy π  = expected return starting from that
state, taking that action, and then following π :

[R. S. Sutton and A. G. Barto]



2/23/08 CS 461, Winter 2008 28

Bellman Equation for a Policy π

  

R
t
= r

t+1 + ! rt+2 +!
2
r
t+ 3 +!

3
r
t+ 4L

= r
t+1 + ! r

t+2 + ! rt+3 + !
2

r
t+ 4L( )

= r
t+1 + ! Rt+1

The basic idea: 

So: 

! 

V
"
(s) = E" R

t
s
t
= s{ }

= E" r
t+1 + #V "

s
t+1( ) st = s{ }

Or, without the expectation operator: 
V
!
(s) = ! (s, a) P

s " s 

a

R
s " s 

a

+ #V
!
( " s )[ ]

" s 

$
a

$

[R. S. Sutton and A. G. Barto]



2/23/08 CS 461, Winter 2008 29

Golf

 State is ball location
 Reward of –1 for each stroke until the ball is in the hole
 Value of a state?
 Actions:

 putt (use putter)
 driver (use driver)

 putt succeeds anywhere on the green

[R. S. Sutton and A. G. Barto]



2/23/08 CS 461, Winter 2008 30

! " # !     if and only if  V
!
(s) " V

# ! 
(s)  for all s $S

Optimal Value Functions

 For finite MDPs, policies can be partially ordered:

 Optimal policy = π *
 Optimal state-value function:

 Optimal action-value function:

V
!
(s) = max

"
V
"
(s)    for all  s #S

Q
!
(s, a) = max

"
Q

"
(s, a)  for all  s #S and a #A(s)

This is the expected return for taking action a in state s
and thereafter following an optimal policy.

[R. S. Sutton and A. G. Barto]



2/23/08 CS 461, Winter 2008 31

Optimal Value Function for Golf

 We can hit the ball farther with driver than
with putter, but with less accuracy

 Q*(s,driver) gives the value of using driver
first, then using whichever actions are best

[R. S. Sutton and A. G. Barto]



2/23/08 CS 461, Winter 2008 32

Why Optimal State-Value Functions are Useful

V
!

V
!

Any policy that is greedy with respect to       is an optimal policy.

Therefore, given     , one-step-ahead search produces the
long-term optimal actions.

[R. S. Sutton and A. G. Barto]

Given      , the agent does not even
have to do a one-step-ahead search:  

Q
*

!
"
(s) = argmax

a#A (s)
Q

"
(s, a)



2/23/08 CS 461, Winter 2008 33

Summary so far…

 Agent-environment
interaction
 States
 Actions
 Rewards

 Policy: stochastic rule for
selecting actions

 Return: the function of future
rewards agent tries to
maximize

 Episodic and continuing tasks
 Markov Decision Process

 Transition probabilities
 Expected rewards

 Value functions
 State-value fn for a policy
 Action-value fn for a policy
 Optimal state-value fn
 Optimal action-value fn

 Optimal value functions
 Optimal policies
 Bellman Equation

[R. S. Sutton and A. G. Barto]



2/23/08 CS 461, Winter 2008 34

 Environment, P (st+1 | st , at ), p (rt+1 | st , at ), is
known

 There is no need for exploration
 Can be solved using dynamic programming
 Solve for

 Optimal policy

Model-Based Learning

! 

V
*
s
t( ) =max

a
t

E r
t+1[ ] + " P s

t+1 | st ,at( )
s
t+1

# V
*
s
t+1( )

$ 

% 
& & 

' 

( 
) ) 

! 

" * s
t( ) = arg max

a
t

E r
t+1 | s

t
,a

t[ ] + # P s
t+1 | s

t
,a

t( )
s
t+1

$ V
*
s
t+1( )

% 

& 
' ' 

( 

) 
* * 

[Alpaydin 2004 © The MIT Press]



2/23/08 CS 461, Winter 2008 35

Value Iteration

[Alpaydin 2004 © The MIT Press]



2/23/08 CS 461, Winter 2008 36

Policy Iteration

[Alpaydin 2004 © The MIT Press]



2/23/08 CS 461, Winter 2008 37

Temporal Difference Learning

 Environment, P (st+1 | st , at ), p (rt+1 | st , at ), is
not known; model-free learning

 There is need for exploration to sample from
P (st+1 | st , at ) and p (rt+1 | st , at )

 Use the reward received in the next time step to
update the value of current state (action)

 The temporal difference between the value of
the current action and the value discounted
from the next state

[Alpaydin 2004 © The MIT Press]



2/23/08 CS 461, Winter 2008 38

Exploration Strategies

 ε-greedy:
 With prob ε,choose one action at random uniformly
 Choose the best action with pr 1-ε

 Probabilistic (softmax: all p > 0):

 Move smoothly from exploration/exploitation
 Annealing: gradually reduce T

( )
( )

( )! =

=
A

1
exp

exp
|

b
b,sQ

a,sQ
saP

( ) ( )[ ]
( )[ ]! =

=
A

1
exp

exp
|

b
T/b,sQ

T/a,sQ
saP

[Alpaydin 2004 © The MIT Press]



2/23/08 CS 461, Winter 2008 39

Deterministic Rewards and Actions

 Deterministic: single possible reward and next
state

 Used as an update rule (backup)

 Updates happen only after reaching the reward
(then are “backed up”)

Starting at zero, Q values increase, never decrease

( ) ( )
111

1

max +++
+

!+= tt
a

ttt a,sQra,sQ
t

( ) ( )
111

1

max +++
+

!+" tt
a

ttt a,sQ̂ra,sQ̂
t

[Alpaydin 2004 © The MIT Press]



2/23/08 CS 461, Winter 2008 40

Consider the value of action marked by ‘*’:
If path A is seen first, Q(*)=0.9*max(0,81)=73
Then B is seen, Q(*)=0.9*max(100,81)=90

Or,
If path B is seen first, Q(*)=0.9*max(100,0)=90
Then A is seen, Q(*)=0.9*max(100,81)=90

Q values increase but never decrease

γ=0.9

[Alpaydin 2004 © The MIT Press]



2/23/08 CS 461, Winter 2008 41

( ) ( ) ( ) ( )( )
ttttt
sVsVrsVsV !"+#+$ ++ 11

Nondeterministic Rewards and Actions

 When next states and rewards are
nondeterministic (there is an opponent or
randomness in the environment), we keep
averages (expected values) instead as
assignments

 Q-learning (Watkins and Dayan, 1992):

 Learning V (TD-learning: Sutton, 1988)

( ) ( ) ( ) ( )!
"
#

$
%
& '(+)+* +++

+

tttt
a

ttttt a,sQ̂a,sQ̂ra,sQ̂a,sQ̂
t

111
1

max

backup

[Alpaydin 2004 © The MIT Press]



2/23/08 CS 461, Winter 2008 42

Q-learning

[Alpaydin 2004 © The MIT Press]



2/23/08 CS 461, Winter 2008 43

TD-Gammon

Start with a random network
Play very many games against self
Learn a value function from this simulated experience

Action selection
by 2–3 ply search

Tesauro, 1992–1995

[R. S. Sutton and A. G. Barto]

-1 pt/40 games1 expert1,500,000TDG 2.1

-7 pts/38 games5 experts800,000TDG 2.0

-13 pts/51 games3 experts300,000TDG 1.0

ResultsOpponentsTraining
games

Program



2/23/08 CS 461, Winter 2008 44

Summary: Key Points for Today

 Reinforcement Learning
 How different from supervised, unsupervised?

 Key components
 Actions, states, transition probs, rewards
 Markov Decision Process
 Episodic vs. continuing tasks
 Value functions, optimal value functions

 Learn: policy (based on V, Q)
 Model-based: value iteration, policy iteration
 TD learning

 Deterministic: backup rules (max)
 Nondeterministic: TD learning, Q-learning (running avg)



2/23/08 CS 461, Winter 2008 45

Homework 4 Solution



2/23/08 CS 461, Winter 2008 46

Next Time

 Ensemble Learning
(read Ch. 15.1-15.5)

 Reading questions are posted on website


