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Plan for Today 

  Unsupervised Learning 
  K-means Clustering 
  EM Clustering 

  Homework 4 
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Review from Lecture 6 

  Parametric methods 
  Data comes from distribution 
  Bernoulli, Gaussian, and their parameters 
  How good is a parameter estimate? (bias, variance) 

  Bayes estimation 
  ML: use the data (assume equal priors) 
  MAP: use the prior and the data 

  Parametric classification 
  Maximize the posterior probability 
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Clustering 

Chapter 7 
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Unsupervised Learning 

  The data has no labels! 
  What can we still learn? 

  Salient groups in the data 
  Density in feature space 

  Key approach: clustering 
  … but also: 

  Association rules 
  Density estimation 
  Principal components analysis (PCA) 
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Clustering 

  Group items by similarity 

  Density estimation, cluster models 
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Applications of Clustering 

  Image Segmentation 

[Ma and Manjunath, 2004] 

  Data Mining: Targeted marketing 
  Remote Sensing: Land cover types 
  Text Analysis 

[Selim Aksoy] 
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Applications of Clustering 

  Text Analysis: Noun Phrase Coreference 

John Simon, Chief Financial 
Officer of Prime Corp. since 
1986, saw his pay jump 20%, 
to $1.3 million, as the 37-year-
old also became the financial-
services company’s president. 

John Simon 
Chief Financial Officer 
his 
the 37-year-old 
president 

Prime Corp.  
the financial-services 
company 

Input text 

Cluster PC 

1986 

pay 

20% 

$1.3 million 

Singletons 
Cluster JS 
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Sometimes easy 

Sometimes impossible 

and sometimes 
in between 
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K-means 
1.  Ask user how many 

clusters they’d like. 
(e.g. k=5)  

[© Andrew Moore] 
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K-means 
1.  Ask user how many 

clusters they’d like. 
(e.g. k=5)  

2.  Randomly guess k 
cluster Center 
locations 

[© Andrew Moore] 
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K-means 
1.  Ask user how many 

clusters they’d like. 
(e.g. k=5)  

2.  Randomly guess k 
cluster Center 
locations 

3.  Each datapoint finds 
out which Center it’s 
closest to. (Thus 
each Center “owns” 
a set of datapoints) 

[© Andrew Moore] 
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K-means 
1.  Ask user how many 

clusters they’d like. 
(e.g. k=5)  

2.  Randomly guess k 
cluster Center 
locations 

3.  Each datapoint finds 
out which Center it’s 
closest to. 

4.  Each Center finds 
the centroid of the 
points it owns 

[© Andrew Moore] 
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K-means 
1.  Ask user how many 

clusters they’d like. 
(e.g. k=5)  

2.  Randomly guess k 
cluster Center 
locations 

3.  Each datapoint finds 
out which Center it’s 
closest to. 

4.  Each Center finds 
the centroid of the 
points it owns… 

5.  …and jumps there 

6.  …Repeat until 
terminated! 

[© Andrew Moore] 
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K-means 
Start: k=5 

Example generated by 
Dan Pelleg’s super-duper 
fast K-means system: 

Dan Pelleg and Andrew 
Moore. Accelerating Exact 
k-means Algorithms with 
Geometric Reasoning. 
Proc. Conference on 
Knowledge Discovery in 
Databases 1999, (KDD99) 
(available on 
www.autonlab.org/pap.html) 

[© Andrew Moore] 
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K-means 
continues… 

[© Andrew Moore] 
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K-means 
continues… 

[© Andrew Moore] 
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K-means 
continues… 

[© Andrew Moore] 
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K-means 
continues… 

[© Andrew Moore] 
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K-means 
continues… 

[© Andrew Moore] 
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K-means 
continues… 

[© Andrew Moore] 
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K-means 
continues… 

[© Andrew Moore] 
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K-means 
continues… 

[© Andrew Moore] 
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K-means 
terminates 

[© Andrew Moore] 
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K-means Algorithm 

1.  Randomly select k cluster centers 

2.  While (points change membership) 
1.  Assign each point to its closest cluster 

  (Use your favorite distance metric) 

2.  Update each center to be the mean of its items 

  Objective function: Variance 

  K-means applet 

€ 

V =
c=1

k

∑ dist(x j ,µc
x j ∈Cc

∑ )2
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K-means Algorithm: Example 

1.  Randomly select k cluster centers 

2.  While (points change membership) 
1.  Assign each point to its closest cluster 

  (Use your favorite distance metric) 

2.  Update each center to be the mean of its items 

  Objective function: Variance 

  Data: [1, 15, 4, 2, 17, 10, 6, 18] 

€ 

V =
c=1

k

∑ dist(x j ,µc
x j ∈Cc

∑ )2
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K-means for Compression 

Original image Clustered, k=4 

159 KB 53 KB 
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Issue 1: Local Optima 

  K-means is greedy! 

  Converging to a non-global optimum: 

[Example from Andrew Moore] 
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Issue 1: Local Optima 

  K-means is greedy! 
  Converging to a non-global optimum: 

[Example from Andrew Moore] 
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Issue 2: How long will it take? 

  We don’t know! 

  K-means is O(nkdI) 
  d = # features (dimensionality) 

  I =# iterations 

  # iterations depends on random initialization 
  “Good” init: few iterations 

  “Bad” init: lots of iterations 

  How can we tell the difference, before clustering? 
  We can’t 

  Use heuristics to guess “good” init 
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Issue 3: How many clusters? 

  The “Holy Grail” of clustering 
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Issue 3: How many clusters? 

  Select k that gives partition with least variance? 

  Best k depends on the user’s goal 

[Dhande and Fiore, 2002] 
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Issue 4: How good is the result? 

  Rand Index 
  A = # pairs in same cluster in both partitions 
  B = # pairs in different clusters in both partitions 
  Rand = (A + B) / Total number of pairs 

1 

5 
3 

2 

4 7 
6 8 

9 10 

1 

5 
3 

2 

4 7 
6 8 

9 
10 

Rand = (5 + 26) / 45 
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K-means: Parametric or Non-parametric? 

  Cluster models: means 
  Data models? 

  All clusters are spherical  
  Distance in any direction is the same 
  Cluster may be arbitrarily “big” to include outliers  
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EM Clustering 

  Parametric solution 
  Model the data distribution 

  Each cluster: Gaussian model 
  Data: “mixture of models” 

  Hidden value zt is the cluster of item t 
  E-step: estimate cluster memberships 

  M-step: maximize likelihood (clusters, params) 

  

€ 

N µ,σ( )

  

€ 

L µ,σ | X( ) = P(X |µ,σ )

  

€ 

E zt X ,µ,σ[ ] =
p x t |C ,µ,σ( )P C( )
p x t |C j ,µ j ,σ j( )P C j( )j∑
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The GMM assumption 

•  There are k components. The 
i’th component is called ωi 

•  Component ωi has an 
associated mean vector µi 

µ1 

µ2 

µ3 

[© Andrew Moore] 
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The GMM assumption 

•  There are k components. The 
i’th component is called ωi 

•  Component ωi has an 
associated mean vector µi 

•  Each component generates data 
from a Gaussian with mean µi 
and covariance matrix σ2I   

Assume that each datapoint is 
generated according to the 
following recipe:  

µ1 

µ2 

µ3 

[© Andrew Moore] 
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The GMM assumption 

•  There are k components. The 
i’th component is called ωi 

•  Component ωi has an 
associated mean vector µi 

•  Each component generates data 
from a Gaussian with mean µi 
and covariance matrix σ2I   

Assume that each datapoint is 
generated according to the 
following recipe:  

1.  Pick a component at random. 
Choose component i with 
probability P(ωi). 

µ2 

[© Andrew Moore] 
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The GMM assumption 

•  There are k components. The 
i’th component is called ωi 

•  Component ωi has an 
associated mean vector µi 

•  Each component generates data 
from a Gaussian with mean µi 
and covariance matrix σ2I   

Assume that each datapoint is 
generated according to the 
following recipe:  

1.  Pick a component at random. 
Choose component i with 
probability P(ωi). 

2.  Datapoint ~ N(µi, σ2I ) 

µ2 

x 

[© Andrew Moore] 
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The General GMM assumption 

µ1 

µ2 

µ3 

•  There are k components. The 
i’th component is called ωi 

•  Component ωi has an 
associated mean vector µi 

•  Each component generates data 
from a Gaussian with mean µi 
and covariance matrix Σi  

Assume that each datapoint is 
generated according to the 
following recipe:  

1.  Pick a component at random. 
Choose component i with 
probability P(ωi). 

2.  Datapoint ~ N(µi, Σi ) 
[© Andrew Moore] 
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EM in action 

  http://www.the-wabe.com/notebook/em-
algorithm.html 
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Gaussian 
Mixture 
Example: 
Start 

[© Andrew Moore] 
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After first 
iteration 

[© Andrew Moore] 
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After 2nd 
iteration 

[© Andrew Moore] 
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After 3rd 
iteration 

[© Andrew Moore] 
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After 4th 
iteration 

[© Andrew Moore] 
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After 5th 
iteration 

[© Andrew Moore] 
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After 6th 
iteration 

[© Andrew Moore] 
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After 20th 
iteration 

[© Andrew Moore] 
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EM Benefits 

  Model actual data distribution, not just centers 
  Get probability of membership in each cluster, 

not just distance 
  Clusters do not need to be “round” 
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EM Issues? 

  Local optima 
  How long will it take? 
  How many clusters? 
  Evaluation 
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Summary: Key Points for Today 

  Unsupervised Learning 
  Why?  How? 

  K-means Clustering 
  Iterative 
  Sensitive to initialization 
  Non-parametric 
  Local optimum 
  Rand Index  

  EM Clustering 
  Iterative 
  Sensitive to initialization 
  Parametric 
  Local optimum 
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Next Time 

  Clustering Reading: Alpaydin Ch. 7.1-7.4, 7.8 
  Reading questions: Gavin, Ronald, Matthew 

  Next time: Reinforcement learning – Robots! 


