CS 461: Machine Learning Lecture 7

Dr. Kiri Wagstaff wkiri@wkiri.com

Plan for Today

- Unsupervised Learning
- K-means Clustering
- EM Clustering
- Homework 4

Review from Lecture 6

- Parametric methods
 - Data comes from distribution
 - Bernoulli, Gaussian, and their parameters
 - How good is a parameter estimate? (bias, variance)
- Bayes estimation
 - ML: use the data (assume equal priors)
 - MAP: use the prior and the data
- Parametric classification
 - Maximize the posterior probability

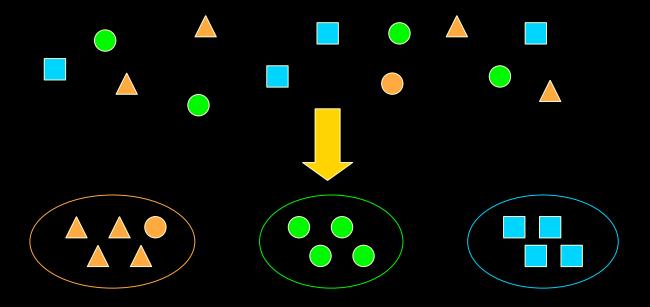
Clustering Chapter 7 CS 461, Winter 2009 2/21/09

Unsupervised Learning

- The data has no labels!
- What can we still learn?
 - Salient groups in the data
 - Density in feature space
- Key approach: clustering
- ... but also:
 - Association rules
 - Density estimation
 - Principal components analysis (PCA)

Clustering

Group items by similarity



Density estimation, cluster models

Applications of Clustering

Image Segmentation

[Ma and Manjunath, 2004]

- Data Mining: Targeted marketing
- Remote Sensing: Land cover types
- Text Analysis

Applications of Clustering

Text Analysis: Noun Phrase Coreference

Input text

John Simon, Chief Financial Officer of Prime Corp. since 1986, saw his pay jump 20%, to \$1.3 million, as the 37-year-old also became the financial-services company's president.

Cluster JS

John Simon

Chief Financial Officer

his

the 37-year-old

president

Cluster PC

Prime Corp.

the financial-services company

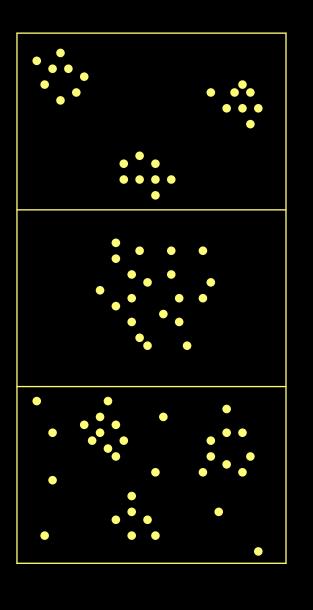
Singletons

1986

pay

20%

\$1.3 million

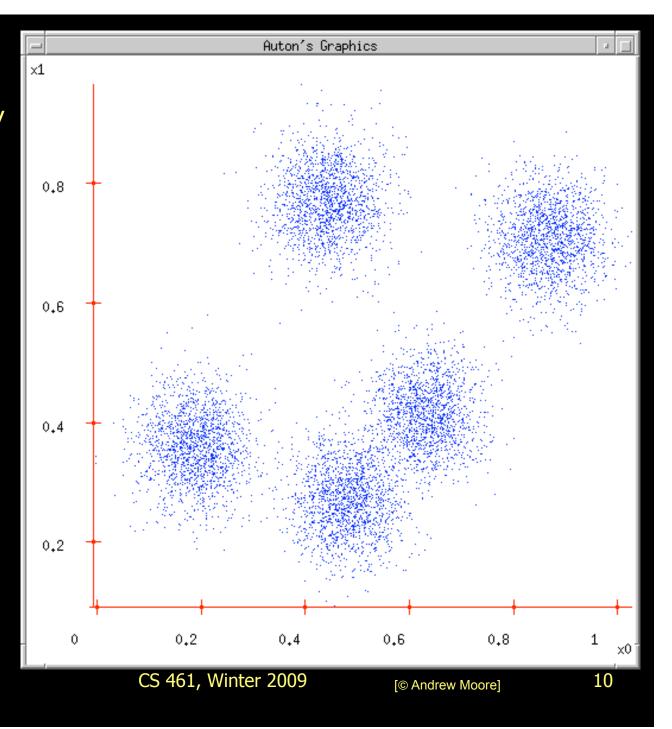


Sometimes easy

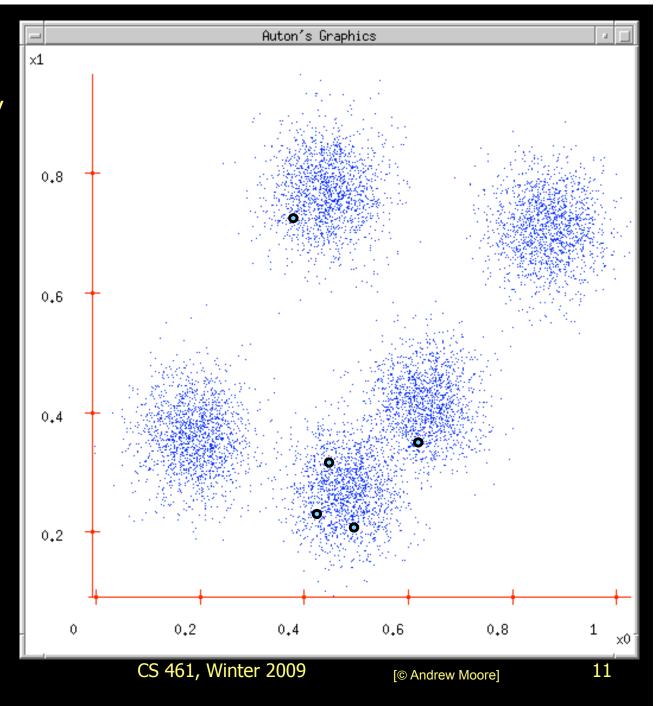
Sometimes impossible

and sometimes in between

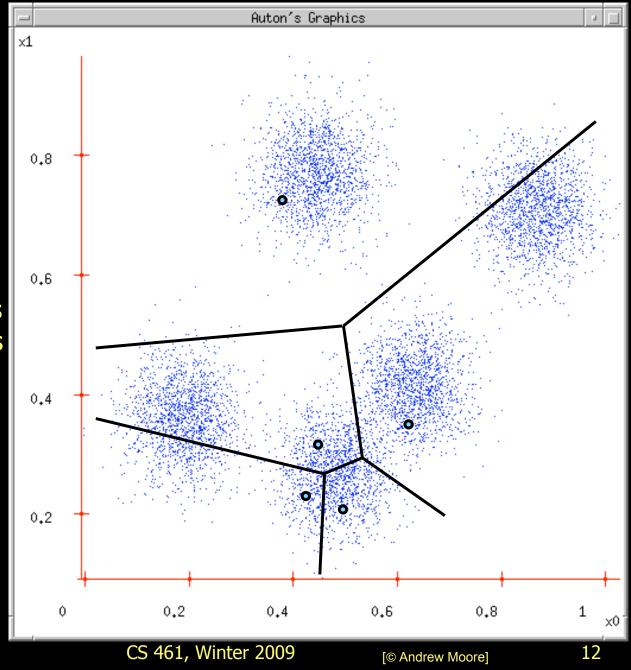
1. Ask user how many clusters they'd like. (e.g. k=5)



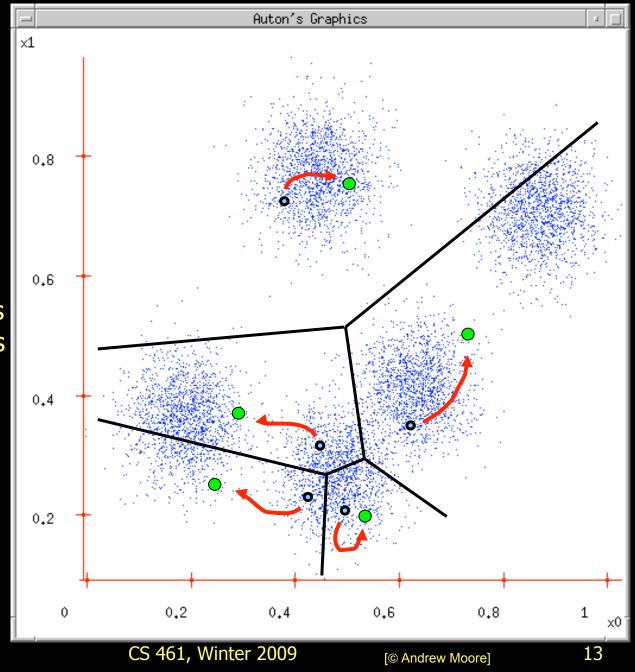
- 1. Ask user how many clusters they'd like. (e.g. k=5)
- 2. Randomly guess k cluster Center locations



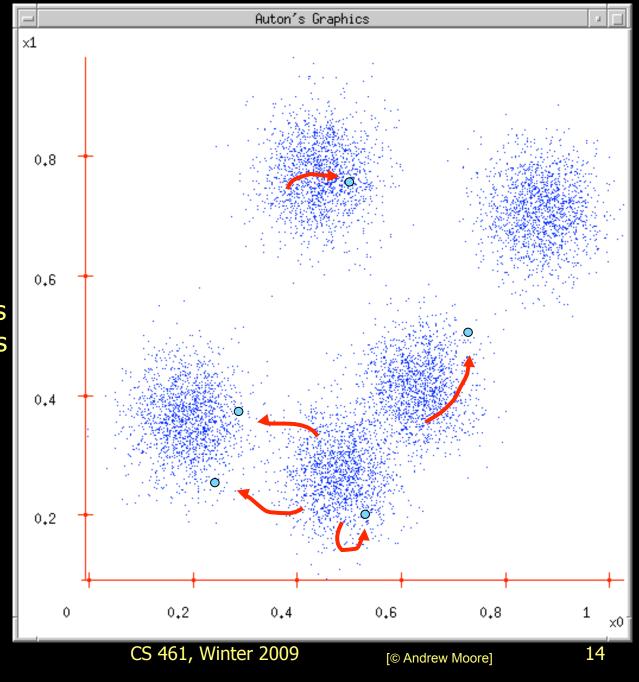
- 1. Ask user how many clusters they'd like. (e.g. k=5)
- 2. Randomly guess k cluster Center locations
- 3. Each datapoint finds out which Center it's closest to. (Thus each Center "owns" a set of datapoints)



- 1. Ask user how many clusters they'd like. (e.g. k=5)
- 2. Randomly guess k cluster Center locations
- 3. Each datapoint finds out which Center it's closest to.
- 4. Each Center finds the centroid of the points it owns



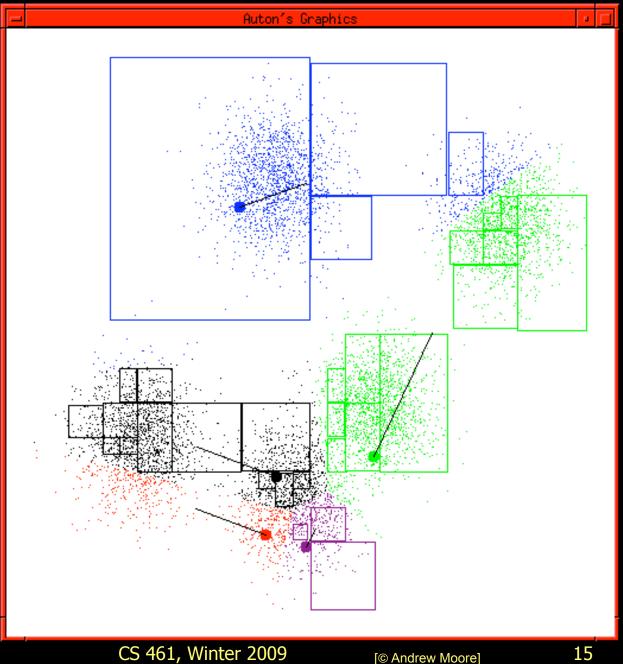
- 1. Ask user how many clusters they'd like. (e.g. k=5)
- 2. Randomly guess k cluster Center locations
- 3. Each datapoint finds out which Center it's closest to.
- 4. Each Center finds the centroid of the points it owns...
- ...and jumps there
- 6. ...Repeat until terminated!

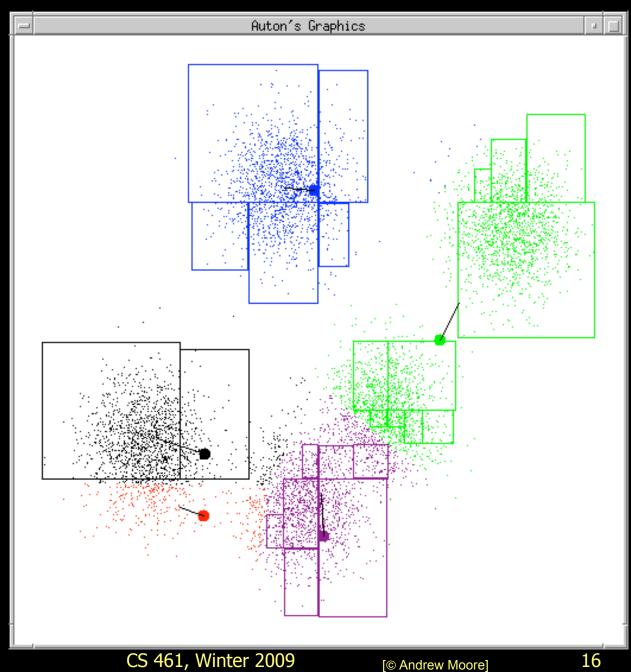


K-means Start: k=5

Example generated by Dan Pelleg's super-duper fast K-means system:

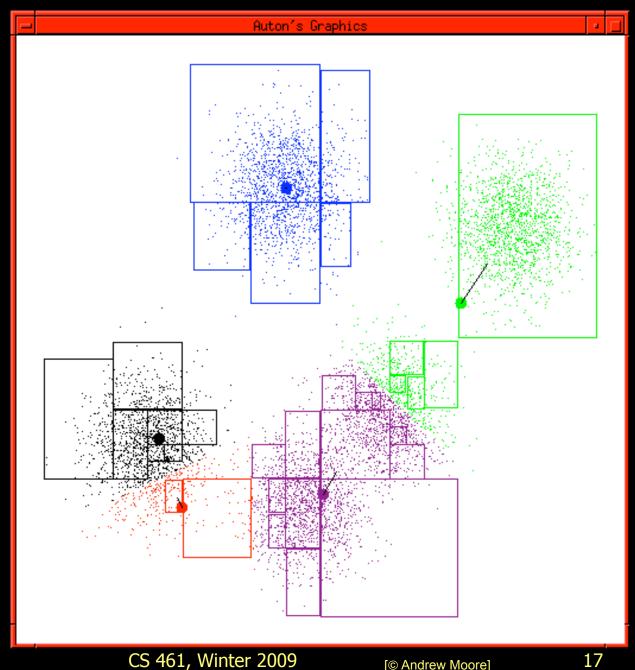
Dan Pelleg and Andrew Moore. Accelerating Exact k-means Algorithms with Geometric Reasoning. Proc. Conference on Knowledge Discovery in Databases 1999, (KDD99) (available on www.autonlab.org/pap.html)





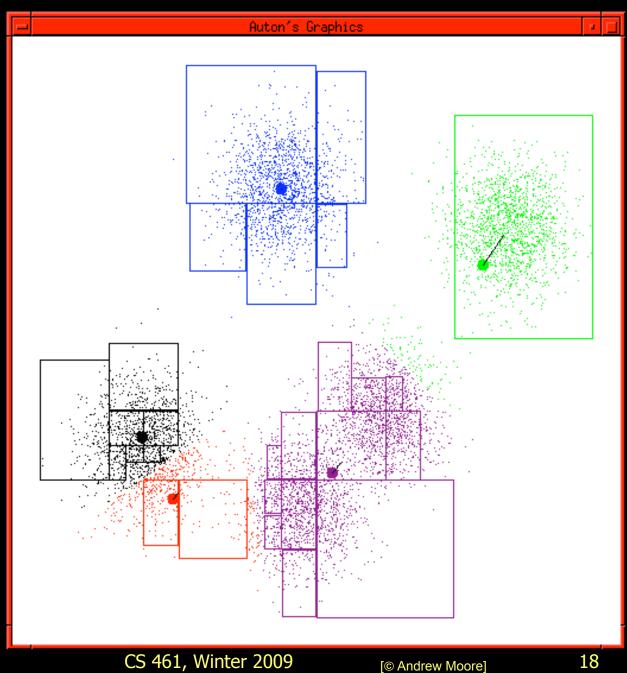
2/21/09

CS 461, Winter 2009



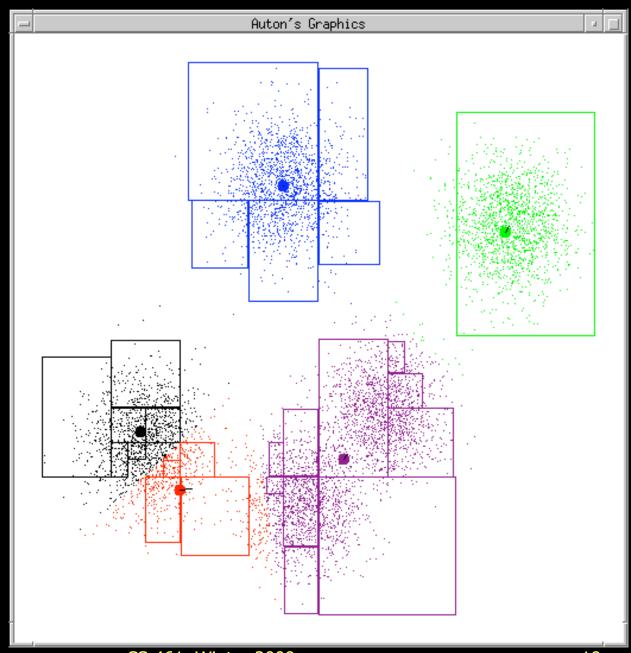
2/21/09

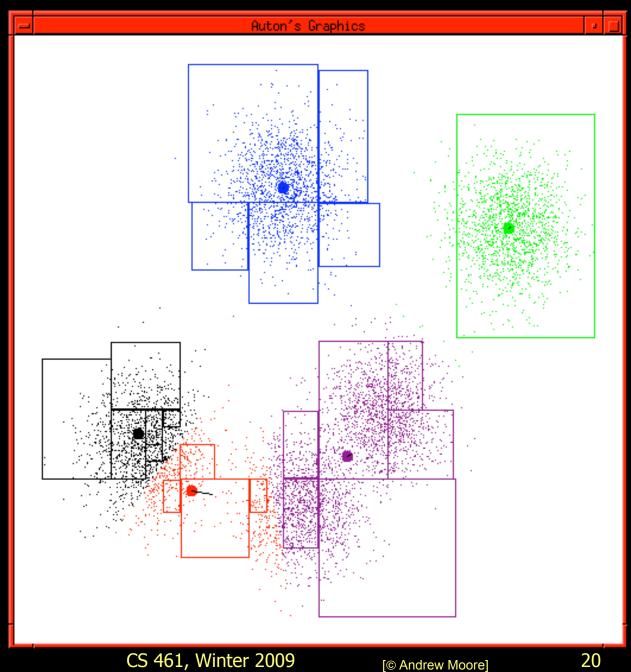
CS 461, Winter 2009



2/21/09

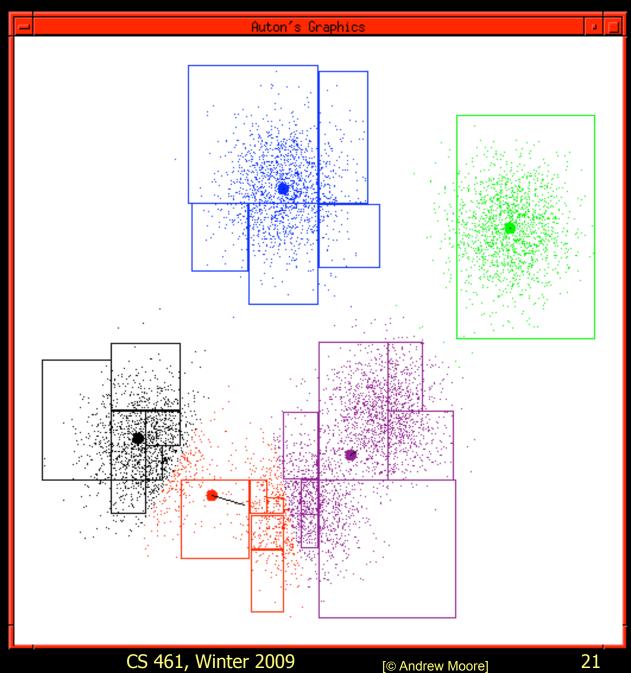
CS 461, Winter 2009

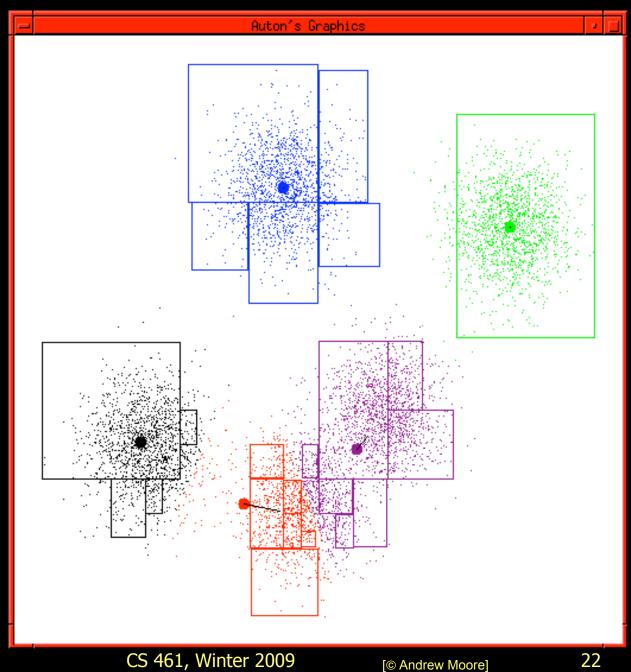


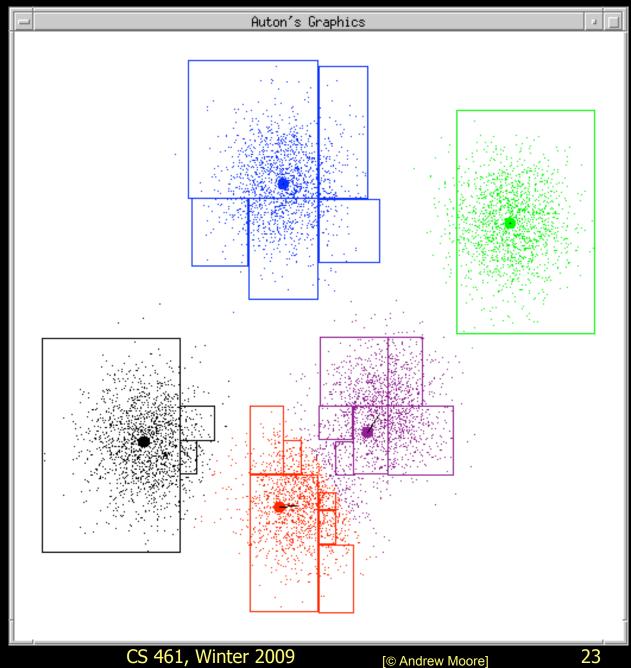


2/21/09

CS 461, Winter 2009



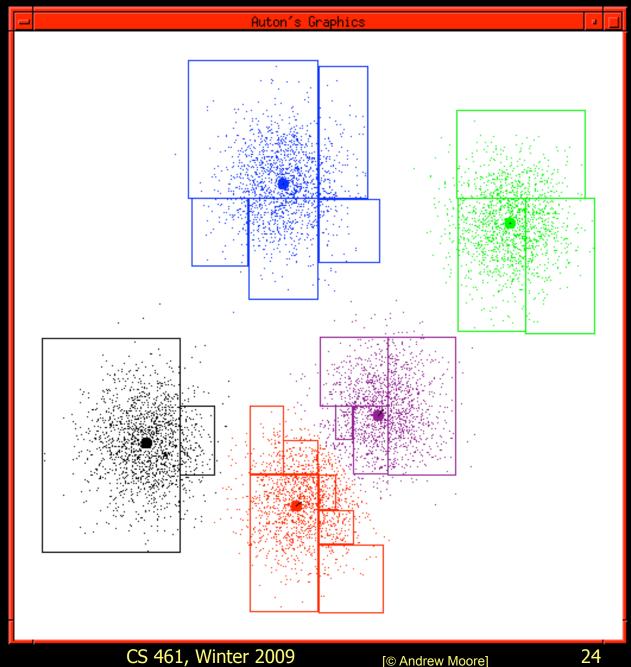




2/21/09

CS 461, Winter 2009

K-means terminates



2/21/09

CS 461, Winter 2009

K-means Algorithm

- 1. Randomly select k cluster centers
- 2. While (points change membership)
 - 1. Assign each point to its closest cluster
 - (Use your favorite distance metric)
 - 2. Update each center to be the mean of its items
- Objective function: Variance

$$V = \sum_{c=1}^{k} \sum_{x_j \in C_c} dist(x_j, \mu_c)^2$$

K-means applet

K-means Algorithm: Example

- 1. Randomly select *k* cluster centers
- 2. While (points change membership)
 - 1. Assign each point to its closest cluster
 - (Use your favorite distance metric)
 - 2. Update each center to be the mean of its items
- Objective function: Variance

$$V = \sum_{c=1}^{k} \sum_{x_j \in C_c} dist(x_j, \mu_c)^2$$

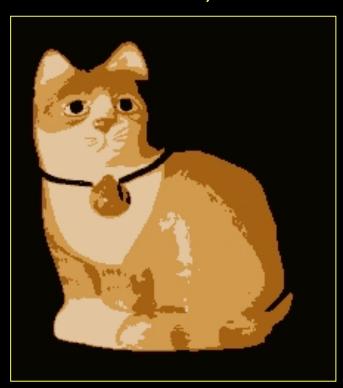
Data: [1, 15, 4, 2, 17, 10, 6, 18]

K-means for Compression

Original image

159 KB

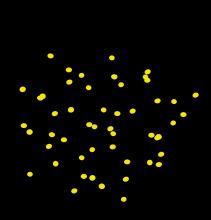
Clustered, k=4

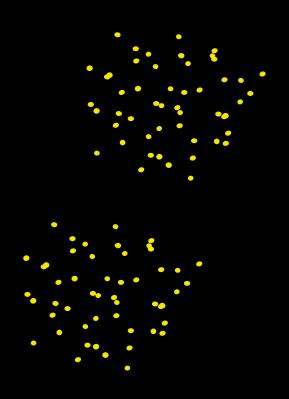


53 KB

Issue 1: Local Optima

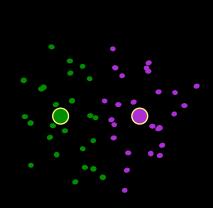
- K-means is greedy!
- Converging to a non-global optimum:

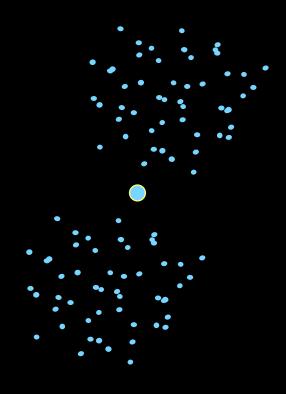




Issue 1: Local Optima

- K-means is greedy!
- Converging to a non-global optimum:



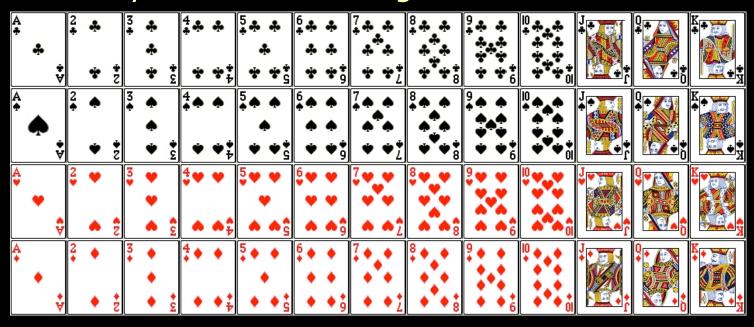


Issue 2: How long will it take?

- We don't know!
- K-means is O(nkdI)
 - d = # features (dimensionality)
 - I =# iterations
- # iterations depends on random initialization
 - "Good" init: few iterations
 - "Bad" init: lots of iterations
 - How can we tell the difference, before clustering?
 - We can't
 - Use heuristics to guess "good" init

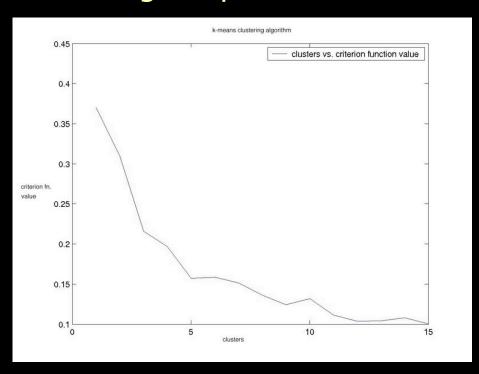
Issue 3: How many clusters?

The "Holy Grail" of clustering



Issue 3: How many clusters?

Select k that gives partition with least variance?



[Dhande and Fiore, 2002]

Best k depends on the user's goal

Issue 4: How good is the result?

- Rand Index
 - A = # pairs in same cluster in both partitions
 - B = # pairs in different clusters in both partitions
 - Rand = (A + B) / Total number of pairs

Rand =
$$(5 + 26) / 45$$

K-means: Parametric or Non-parametric?

- Cluster models: means
- Data models?
- All clusters are spherical
 - Distance in any direction is the same
 - Cluster may be arbitrarily "big" to include outliers

EM Clustering

- Parametric solution
 - Model the data distribution
- Each cluster: Gaussian model

 $\mathcal{N}(\mu,\sigma)$

- Data: "mixture of models"
- Hidden value z^t is the cluster of item t
- E-step: estimate cluster memberships

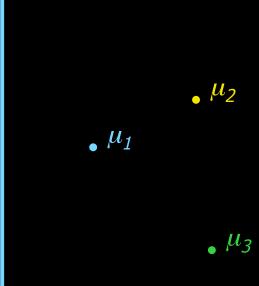
$$E[z^{t}|\mathcal{X},\mu,\sigma] = \frac{p(\mathbf{x}^{t}|C,\mu,\sigma)P(C)}{\sum_{j} p(\mathbf{x}^{t}|C_{j},\mu_{j},\sigma_{j})P(C_{j})}$$

M-step: maximize likelihood (clusters, params)

$$\mathcal{L}(\mu, \sigma \mid X) = P(X \mid \mu, \sigma)$$

The GMM assumption

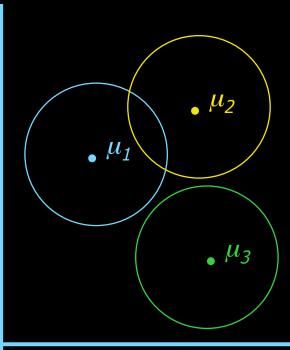
- There are k components. The i'th component is called ω_i
- Component ω_i has an associated mean vector μ_i



The GMM assumption

- There are k components. The i'th component is called ω_i
- Component ω_i has an associated mean vector μ_i
- Each component generates data from a Gaussian with mean μ_i and covariance matrix $\sigma^2 \mathbf{I}$

Assume that each datapoint is generated according to the following recipe:



The GMM assumption

- There are k components. The i'th component is called ω_i
- Component ω_i has an associated mean vector μ_i
- Each component generates data from a Gaussian with mean μ_i and covariance matrix $\sigma^2 \mathbf{I}$

Assume that each datapoint is generated according to the following recipe:

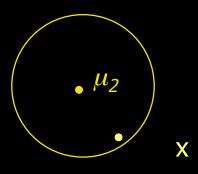
Pick a component at random. Choose component i with probability $P(\omega_i)$.

The GMM assumption

- There are k components. The i'th component is called ω_i
- Component ω_i has an associated mean vector μ_i
- Each component generates data from a Gaussian with mean μ_i and covariance matrix $\sigma^2 \mathbf{I}$

Assume that each datapoint is generated according to the following recipe:

- Pick a component at random. Choose component i with probability $P(\omega_i)$.
- 2. Datapoint $\sim N(\mu_i, \sigma^2 \mathbf{I})$

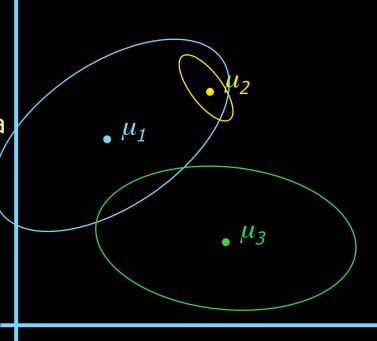


The General GMM assumption

- There are k components. The i'th component is called ω_i
- Component ω_i has an associated mean vector μ_i
- Each component generates data from a Gaussian with mean μ_i and covariance matrix Σ_i

Assume that each datapoint is generated according to the following recipe:

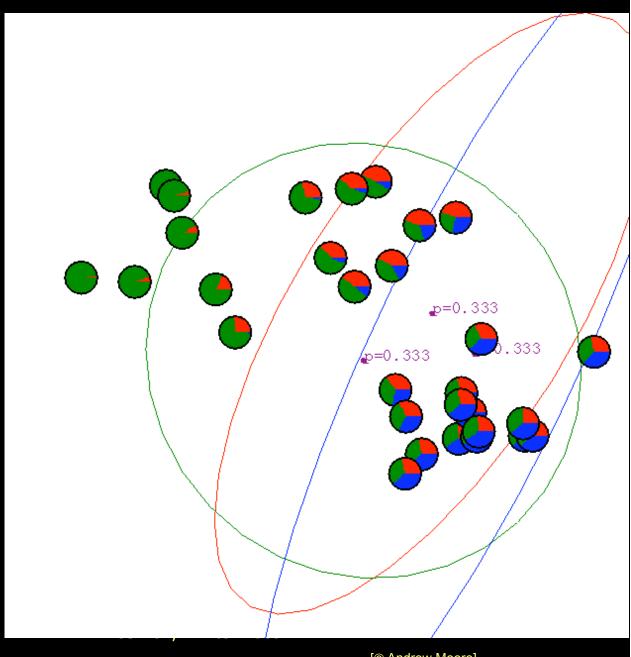
- Pick a component at random. Choose component i with probability $P(\omega_i)$.
- 2. Datapoint $\sim N(\mu_i, \Sigma_i)$



EM in action

 http://www.the-wabe.com/notebook/emalgorithm.html

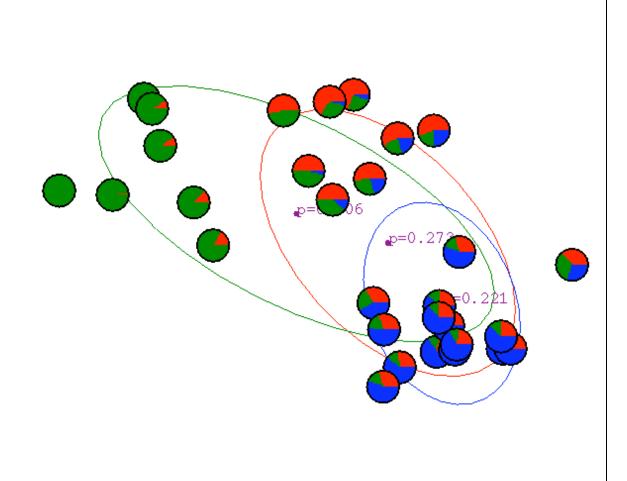
Gaussian Mixture Example: Start



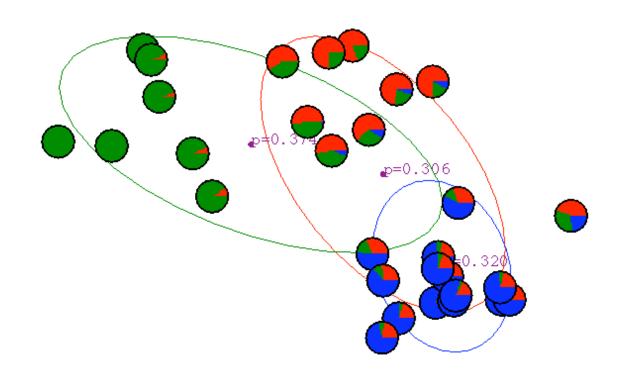
2/21/09

[© Andrew Moore]

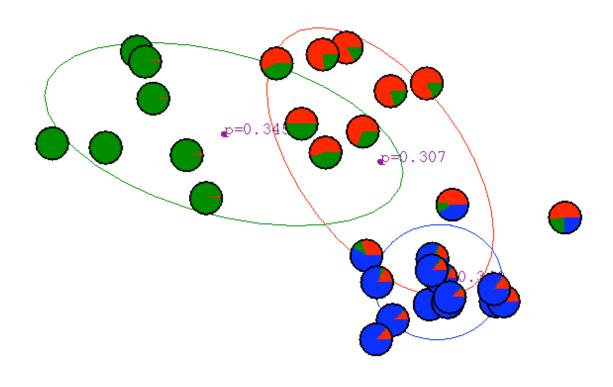
After first iteration



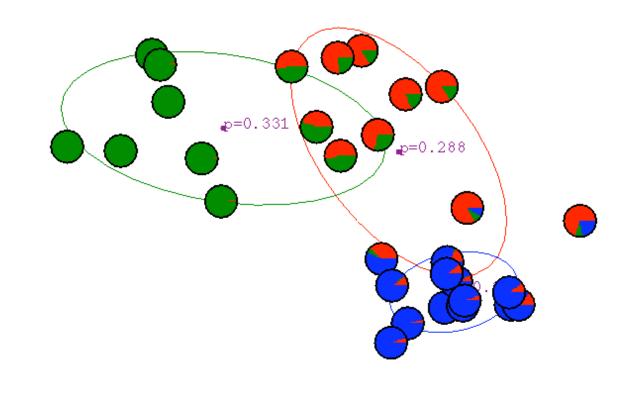
After 2nd iteration



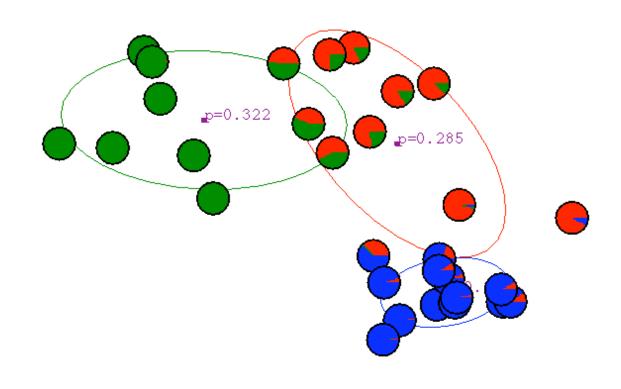
After 3rd iteration



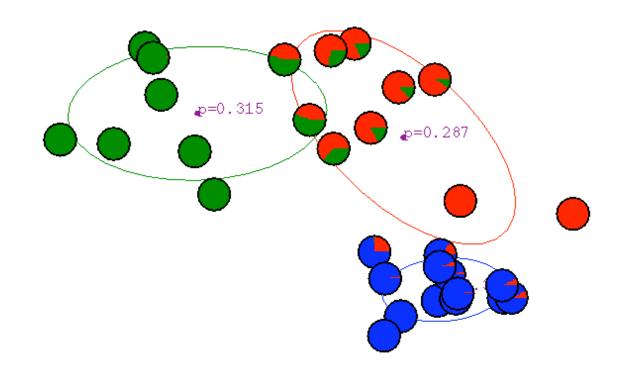
After 4th iteration



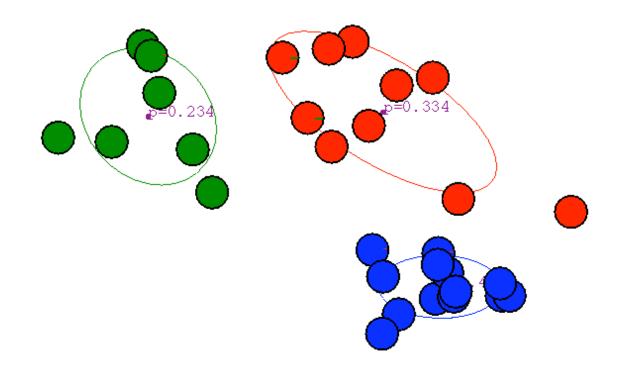
After 5th iteration



After 6th iteration



After 20th iteration



EM Benefits

- Model actual data distribution, not just centers
- Get probability of membership in each cluster, not just distance
- Clusters do not need to be "round"

EM Issues?

- Local optima
- How long will it take?
- How many clusters?
- Evaluation

Summary: Key Points for Today

- Unsupervised Learning
 - Why? How?
- K-means Clustering
 - Iterative
 - Sensitive to initialization
 - Non-parametric
 - Local optimum
 - Rand Index
- EM Clustering
 - Iterative
 - Sensitive to initialization
 - Parametric
 - Local optimum

Next Time

- Clustering Reading: Alpaydin Ch. 7.1-7.4, 7.8
- Reading questions: Gavin, Ronald, Matthew
- Next time: Reinforcement learning Robots!