3/7/09

CS 461: Machine Learning
Lecture 9

Dr. Kiri Wagstaff
WKiri @Wki . CO'I!_;;;;_“,;‘

n—
———__

=

CS 461, Winter 2009

Plan for Today

= Reinforcement Learning

= Ensemble Learning
How to combine forces?
Voting

Bagging
Boosting

Evaluations

3/7/09 CS 461, Winter 2009

Reinforcement Learning

Chapter 16

2/28/09 CS 461, Winter 2009

Summary: Reinforcement Learning

= Reinforcement Learning
How different from supervised, unsupervised?
= Key components

Actions, states, transition probs, rewards
Markov Decision Process

Episodic vs. continuing tasks

Value functions, optimal value functions

= How to learn a good policy?

2/28/09 CS 461, Winter 2009

Define a reinforcement learning problem:
Drive a car

= States?
= Actions?
= Reward?

2/28/09 CS 461, Winter 2009

Value Functions

= The value of a state = expected return starting
from that state; depends on the agent’s policy:

State - value function for policyr :

V()= E{R |5 =s) = E{Ey 5 = }

= The value of taking an action in a state under
policy w = expected return starting from that
state, taking that action, and then following 7 :

Action- value function for policy :

Q" (s,a) = En{Rt | v = S =a} =L {E)/kr;+k+l §; = 8,4, =a}
£=0

2/28/09 CS 461/ Winter 2009 [R. S. Sutton and A. G. Barto] 6

Bellman Equation for a Policy =«

The basic i1dea:

R, t+1 + y r+2 y r+3)/ t+4
t+1 + }/(t+2 + y r+3 y t+4)
+ YR

t+1 r+1

Or, without the expectation operator:

V7(s)= Y a(s.a) Y PR + yV™ (s)]

2/28/09 CS 461, Winter 2009 [R.S. Sutton and A. G. Barto] 7

Optimal Value Functions

= For finite MDPs, policies can be partially ordered:
w=mx' ifandonlyif V7(s)=V”" (s) forall s ES

= Optimal policy = 7 *

= Optimal state-value function:
Vi(s) = mJEIXV”(S) forall s€ S

= Optimal action-value function:
Q" (s,a) =max Q" (s,a) forall s&E S and a € A(s)

This 1s the expected return for taking action a in state s
and thereafter following an optimal policy.

2/28/09 CS 461/ Winter 2009 [R. S. Sutton and A. G. Barto] 8

Why Optimal State-Value Functions are Useful

Any policy that 1s greedy with respect to is an optimal policy.

Therefore, given , one-step-ahead search produces the
long-term optimal actions.

Given , the agent does not even
have to do a one-step-ahead search:

7 (s)=argmax Q(s,a)
acA(s)

2/28/09 CS 461/ Winter 2009 [R. S. Sutton and A. G. Barto] 9

Model-Based Learning

Environment, P (Syq | S, @) P (Fay | S¢, @), 1S
known

There is no need for exploration
Can be solved using dynamic programming
Solve for

Optimal policy

ES —
m*(s,) =arg max| E[r,, |s,.q, +yEP S l8.a,)

a;

2/28/09 CS 461, Winter 2009 [Alpaydin 2004 © The MIT Press] 10

Temporal Difference Learning

Environment, P (Suy | St/ @:)s P (Fay | Sty 1),
is not known; model-free learning

There is need for exploration to sample from
P(Sg1 | Si, @) and p(ryq | St/ @)
Exploration vs. Exploitation

Use the reward received in the next time step to
update the value of current state (action)

The temporal difference between the value of the
current action and the value discounted from the

next state

2/28/09 CS 461, Winter 2009 [Alpaydin 2004 © The MIT Press]

Deterministic Rewards and Actions

= Deterministic: single possible reward and next state

Q(St’at)= rt+1 +Y I];laX Q(St+1’at+1)

t+1

= Used as an update rule (backup)

Q(St’at)e rt+1 + Y Ilg‘ax Q(St+1’at+1)

t+1

= Updates happen only after reaching the reward (then
are “backed up”)

Starting at zero, Q values increase, never decrease

2/28/09 CS 461, Winter 2009 [Alpaydin 2004 © The MIT Press] 12

Consider the value of action marked by “*':
If path A is seen first, Q(*)=0.9*max(0,81)=73
Then B is seen, Q(*)=0.9*max(100,81)=90

Or,
If path B is seen first, Q(*)=0.9*max(100,0)=90
Then A is seen, Q(*)=0.9*max(100,81)=90

Q values increase but never decrease

2/28/09 CS 461, Winter 2009 [Alpaydin 2004 © The MIT Press] 13

Nondeterministic Rewards and Actions

= When next states and rewards are
nondeterministic (there is an opponent or
randomness in the environment), we keep
averages (expected values) instead as
assignments

= Q-learning (Watkins and Dayan, 1992):

r}+1 +)/nalax Q(St+1’ar+1)

= |Learning V (TD-learning: Sutton, 1988)
rt+1 +)/V<St+1)

2/28/09 CS 461, Winter 2009 [Alpaydin 2004 © The MIT Press] 14

TD_Gammon Tesauro, 1992—-1995

predicted probability
of winning, V,

white pieces move
\ counterclockwise
|

-) -+ (D) hidden units (40-80)

J
TR black pieces
.~ move clockwise

O C>O-;~ o.... O
backgammon position (198 input units)

Action selection
by 2-3 ply search

Start with a random network
Play very many games against self
Learn a value function from this simulated experience

Program | Training Opponents | Results
games

TDG 1.0 | 300,000 3 experts -13 pts/51 games
TDG 2.0 | 800,000 5 experts -7 pts/38 games
TDG 2.1 | 1,500,000 | 1 expert -1 pt/40 games

2/28/09 CS 461, Winter 2009 [R.S. Sutton and A. G. Barto]

\w"ile pieces move
\ counterclockwise
|

Review

J
‘ ' black pieces
.~ move clockwise

Reinforcement Learning
How different from supervised, unsupervised?

= Key components
Actions, states, transition probs, rewards
Markov Decision Process
Episodic vs. continuing tasks
Value functions, optimal value functions

= Learn: policy (based on V, Q)

Model-based: value iteration, policy iteration

TD learning
Deterministic: backup rules (max)
Nondeterministic: TD learning, Q-learning (running avg)

3/7/09 CS 461, Winter 2009

Ensemble Learning

Chapter 15

3/7/09 CS 461, Winter 2009

What is Ensemble Learning?

“No Free Lunch” Theorem
No single algorithm wins all the time!

Ensemble: collection of base learners
Combine the strengths of each to make a super-learner
Also considered “meta-learning”

How can you get different learners?

How can you combine learners?

3/7/09 CS 461, Winter 2009

Where do Learners come from?

Different learning algorithms

Algorithms with different choice for parameters
Data set with different features

Data set = different subsets

Different sub-tasks

3/7/09 CS 461, Winter 2009

Exercise: x's and 0’s

3/7/09 CS 461, Winter 2009

Combine Learners

= Linear combination
(weighted vote)

Bayesian
P(C/lx)= Y P(C/1x.M,)P(M,)

J
all models M i

3/7/09 CS 461, Winter 2009 [Alpaydin 2004 © The MIT Press] 21

Different Learners: Bagging

= Bagging = “bootstrap aggregation”
Bootstrap: draw N items from X with replacement
= Want “unstable” learners
Unstable: high variance

Decision trees and ANNs are unstable
K-NN is stable

= Bagging
Train L learners on L bootstrap samples
Combine outputs by voting

3/7/09 CS 461, Winter 2009

Different Learners: Boosting

= Boosting: train next learner on mistakes made by
previous learner(s)

= Want “"weak” learners
Weak: P(correct) > 50%, but not necessarily by a lot
Idea: solve easy problems with simple model
Save complex model for hard problems

3/7/09 CS 461, Winter 2009

Original Boosting

. Split data X into {X1, X2, X3}

2. Train L1 on X1
Test L1 on X2

. Train L2 on L1’s mistakes on X2 (plus some right)
Test L1 and L2 on X3

. Train L3 on disagreements between L1 and L2
Testing: apply L1 and L2; if disagree, use L3

Drawback: need large X

3/7/09 CS 461, Winter 2009

AdaBoost = Adaptive Boosting

Arbitrary number of base learners
Re-use data set (like bagging)

Use errors to adjust probability of drawing samples
for next learner

Reduce probability if it’s correct
Testing: vote, weighted by training accuracy

Key difference from bagging:

Data sets not chosen by chance; instead use performance of
previous learners to select data

3/7/09 CS 461, Winter 2009

AdaBoost

Training:
For all {zt, 7'} € X, initialize p! = 1/N
For all base-learners 7 =1
Randomly draw &; from A with probabilities])31
Train d; using X}
For each (z',r"), calculate y! — d;(z")
Calculate error rate: €; «— th; 1yt
If ¢, >1/2, then L — j —1; stop
Bj — €i/(1—€5)
For each (z!.r'), decrease probabilities if correct:
If yi =" pl,, — B;jp Else p!
Normalize probabiIiUes

_— t “,.' ' A
th,H—l Piy1 — Pig1/Z;

ot
Jj+1 pj

Testing:
Given z, calculate d;(x).
Calculate class outputs, i =1

Yi = ZL_l (l“% B;)d]t(r)

3/7/09 CS 461, Winter 2009 [Alpaydin 2004 © The MIT Press] 26

AdaBoost Applet

= http://www.cs.ucsd.edu/~vfreund/adaboost/index.html

3/7/09 CS 461, Winter 2009

Summary: Key Points for Today

= Reinforcement Learning
Value and Return functions
Model-based learning
TD-learning

Deterministic: dynamic programming for best policy
Non-deterministic: Q-learning, TD-learning

= No Free Lunch theorem

= Ensemble: combine learners
Voting

Bagging
Boosting

3/7/09 CS 461, Winter 2009

Next Time

Reading question volunteers:

Final Project Presentations
Use order on website

Submit slides on CSNS by midnight March 13

No, really
You may not be able to present if you don't

Reports are due to CSNS midnight March 14
Early submission: March 9

3/7/09 CS 461, Winter 2009

