
3/7/09 CS 461, Winter 2009 1

CS 461: Machine Learning
Lecture 9

Dr. Kiri Wagstaff
wkiri@wkiri.com

3/7/09 CS 461, Winter 2009 2

Plan for Today

  Reinforcement Learning

  Ensemble Learning
  How to combine forces?
  Voting
  Bagging
  Boosting

  Evaluations

2/28/09 CS 461, Winter 2009 3

Reinforcement Learning

Chapter 16

2/28/09 CS 461, Winter 2009 4

Summary: Reinforcement Learning

  Reinforcement Learning
  How different from supervised, unsupervised?

  Key components
  Actions, states, transition probs, rewards
  Markov Decision Process
  Episodic vs. continuing tasks
  Value functions, optimal value functions

  How to learn a good policy?

2/28/09 CS 461, Winter 2009 5

Define a reinforcement learning problem:
Drive a car

  States?
  Actions?
  Reward?

2/28/09 CS 461, Winter 2009 6

Value Functions

State - value function for policy π :

Vπ (s) = Eπ Rt st = s{ } = Eπ γ krt+k +1 st = s
k =0

∞

∑

Action- value function for policy π :

Qπ (s, a) = Eπ Rt st = s, at = a{ } = Eπ γ krt+ k+1 st = s,at = a
k= 0

∞

∑

  The value of a state = expected return starting
from that state; depends on the agent’s policy:

  The value of taking an action in a state under
policy π = expected return starting from that
state, taking that action, and then following π :

[R. S. Sutton and A. G. Barto]

2/28/09 CS 461, Winter 2009 7

Bellman Equation for a Policy π

€

Rt = rt+1 + γ rt+2 + γ 2rt+3 + γ 3rt+4

= rt+1 + γ rt+2 + γ rt+3 + γ 2rt+4()
= rt+1 + γRt+1

The basic idea:

So:

€

V π (s) = Eπ Rt st = s{ }
= Eπ rt+1 + γV π st+1() st = s{ }

Or, without the expectation operator:

€

V π (s) = π (s,a) Ps ′ s
a Rs ′ s

a + γV π (′ s)[]
′ s
∑

a
∑

[R. S. Sutton and A. G. Barto]

2/28/09 CS 461, Winter 2009 8

π ≥ ′ π if and only if Vπ (s) ≥ V ′ π (s) for all s ∈S

Optimal Value Functions

  For finite MDPs, policies can be partially ordered:

  Optimal policy = π *
  Optimal state-value function:

  Optimal action-value function:

€

V ∗(s) = max
π
V π (s) for all s∈ S

€

Q∗(s,a) = max
π
Qπ (s,a) for all s∈ S and a∈ A(s)

This is the expected return for taking action a in state s
and thereafter following an optimal policy.

[R. S. Sutton and A. G. Barto]

2/28/09 CS 461, Winter 2009 9

Why Optimal State-Value Functions are Useful

V∗

V∗

Any policy that is greedy with respect to is an optimal policy.

Therefore, given , one-step-ahead search produces the
long-term optimal actions.

[R. S. Sutton and A. G. Barto]

Given , the agent does not even
have to do a one-step-ahead search:

Q*

π∗(s) = argmax
a∈A (s)

Q∗(s, a)

2/28/09 CS 461, Winter 2009 10

  Environment, P (st+1 | st , at), p (rt+1 | st , at), is
known

  There is no need for exploration
  Can be solved using dynamic programming
  Solve for

  Optimal policy

Model-Based Learning

€

V * st() =max
at

E rt+1[] + γ P st+1 | st ,at()
st+1

∑ V * st+1()

€

π * st() = arg max
at

E rt+1 | st ,at[] + γ P st+1 | st ,at()
st+1

∑ V * st+1()

[Alpaydin 2004 © The MIT Press]

2/28/09 CS 461, Winter 2009 11

Temporal Difference Learning

  Environment, P (st+1 | st , at), p (rt+1 | st , at),
is not known; model-free learning

  There is need for exploration to sample from
 P (st+1 | st , at) and p (rt+1 | st , at)
  Exploration vs. Exploitation

  Use the reward received in the next time step to
update the value of current state (action)

  The temporal difference between the value of the
current action and the value discounted from the
next state

[Alpaydin 2004 © The MIT Press]

2/28/09 CS 461, Winter 2009 12

Deterministic Rewards and Actions

  Deterministic: single possible reward and next state

  Used as an update rule (backup)

  Updates happen only after reaching the reward (then
are “backed up”)

Starting at zero, Q values increase, never decrease

() ()111
1

max +++
+

γ+= tt
a

ttt a,sQra,sQ
t

() ()111
1

max +++
+

γ+← tt
a

ttt a,sQ̂ra,sQ̂
t

[Alpaydin 2004 © The MIT Press]

2/28/09 CS 461, Winter 2009 13

Consider the value of action marked by ‘*’:
If path A is seen first, Q(*)=0.9*max(0,81)=73
Then B is seen, Q(*)=0.9*max(100,81)=90

Or,
If path B is seen first, Q(*)=0.9*max(100,0)=90
Then A is seen, Q(*)=0.9*max(100,81)=90

Q values increase but never decrease

γ=0.9

[Alpaydin 2004 © The MIT Press]

2/28/09 CS 461, Winter 2009 14

€

V st()←V st() +η rt+1 + γV st+1() −V st()()

Nondeterministic Rewards and Actions

  When next states and rewards are
nondeterministic (there is an opponent or
randomness in the environment), we keep
averages (expected values) instead as
assignments

  Q-learning (Watkins and Dayan, 1992):

  Learning V (TD-learning: Sutton, 1988)

€

ˆ Q st ,at()← ˆ Q st ,at() +η rt +1 + γmax
at+1

ˆ Q st +1,at +1() − ˆ Q st ,at()

backup

[Alpaydin 2004 © The MIT Press]

2/28/09 CS 461, Winter 2009 15

TD-Gammon

Start with a random network
Play very many games against self
Learn a value function from this simulated experience

Action selection
by 2–3 ply search

Tesauro, 1992–1995

[R. S. Sutton and A. G. Barto]

Program Training
games

Opponents Results

TDG 1.0 300,000 3 experts -13 pts/51 games

TDG 2.0 800,000 5 experts -7 pts/38 games

TDG 2.1 1,500,000 1 expert -1 pt/40 games

3/7/09 CS 461, Winter 2009 16

Review

  Reinforcement Learning
  How different from supervised, unsupervised?

  Key components
  Actions, states, transition probs, rewards
  Markov Decision Process
  Episodic vs. continuing tasks
  Value functions, optimal value functions

  Learn: policy (based on V, Q)
  Model-based: value iteration, policy iteration
  TD learning

  Deterministic: backup rules (max)
  Nondeterministic: TD learning, Q-learning (running avg)

3/7/09 CS 461, Winter 2009 17

Ensemble Learning

Chapter 15

3/7/09 CS 461, Winter 2009 18

What is Ensemble Learning?

  “No Free Lunch” Theorem
  No single algorithm wins all the time!

  Ensemble: collection of base learners
  Combine the strengths of each to make a super-learner
  Also considered “meta-learning”

  How can you get different learners?

  How can you combine learners?

3/7/09 CS 461, Winter 2009 19

Where do Learners come from?

  Different learning algorithms
  Algorithms with different choice for parameters
  Data set with different features
  Data set = different subsets
  Different sub-tasks

3/7/09 CS 461, Winter 2009 20

Exercise: x’s and o’s

3/7/09 CS 461, Winter 2009 21

Combine Learners: Voting

  Linear combination
(weighted vote)

  Classification
€

y = w jd j
j=1

L

∑

w j ≥ 0 and w j
j=1

L

∑ =1

€

yi = w jd ji
j=1

L

∑

€

P Ci | x() = P Ci | x,M j()
all models M j

∑ P M j()
Bayesian

[Alpaydin 2004 © The MIT Press]

3/7/09 CS 461, Winter 2009 22

Different Learners: Bagging

  Bagging = “bootstrap aggregation”
  Bootstrap: draw N items from X with replacement

  Want “unstable” learners
  Unstable: high variance
  Decision trees and ANNs are unstable
  K-NN is stable

  Bagging
  Train L learners on L bootstrap samples
  Combine outputs by voting

3/7/09 CS 461, Winter 2009 23

Different Learners: Boosting

  Boosting: train next learner on mistakes made by
previous learner(s)

  Want “weak” learners
  Weak: P(correct) > 50%, but not necessarily by a lot
  Idea: solve easy problems with simple model
  Save complex model for hard problems

3/7/09 CS 461, Winter 2009 24

Original Boosting

1.  Split data X into {X1, X2, X3}
2.  Train L1 on X1

  Test L1 on X2

3.  Train L2 on L1’s mistakes on X2 (plus some right)
  Test L1 and L2 on X3

4.  Train L3 on disagreements between L1 and L2
  Testing: apply L1 and L2; if disagree, use L3

  Drawback: need large X

3/7/09 CS 461, Winter 2009 25

AdaBoost = Adaptive Boosting

  Arbitrary number of base learners
  Re-use data set (like bagging)
  Use errors to adjust probability of drawing samples

for next learner
  Reduce probability if it’s correct

  Testing: vote, weighted by training accuracy

  Key difference from bagging:
  Data sets not chosen by chance; instead use performance of

previous learners to select data

3/7/09 CS 461, Winter 2009 26

AdaBoost

[Alpaydin 2004 © The MIT Press]

3/7/09 CS 461, Winter 2009 27

AdaBoost Applet

  http://www.cs.ucsd.edu/~yfreund/adaboost/index.html

3/7/09 CS 461, Winter 2009 28

Summary: Key Points for Today

  Reinforcement Learning
  Value and Return functions
  Model-based learning
  TD-learning

  Deterministic: dynamic programming for best policy
  Non-deterministic: Q-learning, TD-learning

  No Free Lunch theorem
  Ensemble: combine learners

  Voting
  Bagging
  Boosting

3/7/09 CS 461, Winter 2009 29

Next Time

  Reading question volunteers:

  Final Project Presentations
  Use order on website

  Submit slides on CSNS by midnight March 13
  No, really
  You may not be able to present if you don’t

  Reports are due to CSNS midnight March 14
  Early submission: March 9

