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Plan for Today 

  Reinforcement Learning 

  Ensemble Learning 
  How to combine forces? 
  Voting 
  Bagging 
  Boosting 

  Evaluations 
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Reinforcement Learning 

Chapter 16 
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Summary: Reinforcement Learning 

  Reinforcement Learning 
  How different from supervised, unsupervised? 

  Key components 
  Actions, states, transition probs, rewards 
  Markov Decision Process 
  Episodic vs. continuing tasks 
  Value functions, optimal value functions 

  How to learn a good policy? 
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Define a reinforcement learning problem: 
Drive a car 

  States? 
  Actions? 
  Reward? 
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Value Functions 

State - value function for policy π :

Vπ (s) = Eπ Rt st = s{ } = Eπ γ krt+k +1 st = s
k =0

∞

∑ 
 
 

 
 
 

Action- value function for policy π :

Qπ (s, a) = Eπ Rt st = s, at = a{ } = Eπ γ krt+ k+1 st = s,at = a
k= 0

∞

∑ 
 
 

 
 
 

  The value of a state = expected return starting 
from that state; depends on the agent’s policy: 

  The value of taking an action in a state under 
policy π  = expected return starting from that 
state, taking that action, and then following π : 

[R. S. Sutton and A. G. Barto]
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Bellman Equation for a Policy π 

  

€ 

Rt = rt+1 + γ rt+2 + γ 2rt+3 + γ 3rt+4

= rt+1 + γ rt+2 + γ rt+3 + γ 2rt+4( )
= rt+1 + γRt+1

The basic idea: 

So: 

€ 

V π (s) = Eπ Rt st = s{ }
= Eπ rt+1 + γV π st+1( ) st = s{ }

Or, without the expectation operator: 

€ 

V π (s) = π (s,a) Ps ′ s 
a Rs ′ s 

a + γV π ( ′ s )[ ]
′ s 
∑

a
∑

[R. S. Sutton and A. G. Barto]
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π ≥ ′ π     if and only if  Vπ (s) ≥ V ′ π (s)  for all s ∈S

Optimal Value Functions 

  For finite MDPs, policies can be partially ordered:  

  Optimal policy = π * 
  Optimal state-value function: 

  Optimal action-value function: 

€ 

V ∗(s) = max
π
V π (s)   for all  s∈ S

€ 

Q∗(s,a) = max
π
Qπ (s,a)  for all  s∈ S and a∈ A(s)

This is the expected return for taking action a in state s  
and thereafter following an optimal policy.

[R. S. Sutton and A. G. Barto]
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Why Optimal State-Value Functions are Useful 

V∗

V∗

Any policy that is greedy with respect to       is an optimal policy.

Therefore, given     , one-step-ahead search produces the 
long-term optimal actions.

[R. S. Sutton and A. G. Barto]

Given      , the agent does not even
have to do a one-step-ahead search:  

Q*

π∗(s) = argmax
a∈A (s)

Q∗(s, a)
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  Environment, P (st+1 | st , at ), p (rt+1 | st , at ), is 
known 

  There is no need for exploration 
  Can be solved using dynamic programming 
  Solve for 

  Optimal policy 

Model-Based Learning 

€ 

V * st( ) =max
at

E rt+1[ ] + γ P st+1 | st ,at( )
st+1

∑ V * st+1( )
 

 
  

 

 
  

€ 

π * st( ) = arg max
at

E rt+1 | st ,at[ ] + γ P st+1 | st ,at( )
st+1

∑ V * st+1( )
 

 
  

 

 
  

[Alpaydin 2004 © The MIT Press] 
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Temporal Difference Learning 

  Environment, P (st+1 | st , at ), p (rt+1 | st , at ),  
is not known; model-free learning 

  There is need for exploration to sample from  
 P (st+1 | st , at ) and p (rt+1 | st , at ) 
  Exploration vs. Exploitation 

  Use the reward received in the next time step to 
update the value of current state (action) 

  The temporal difference between the value of the 
current action and the value discounted from the 
next state  

[Alpaydin 2004 © The MIT Press] 
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Deterministic Rewards and Actions 

  Deterministic: single possible reward and next state 

  Used as an update rule (backup) 

  Updates happen only after reaching the reward (then 
are “backed up”) 

Starting at zero, Q values increase, never decrease 

( ) ( )111
1

max +++
+

γ+= tt
a

ttt a,sQra,sQ
t

( ) ( )111
1

max +++
+

γ+← tt
a

ttt a,sQ̂ra,sQ̂
t

[Alpaydin 2004 © The MIT Press] 
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Consider the value of action marked by ‘*’: 
If path A is seen first, Q(*)=0.9*max(0,81)=73 
Then B is seen, Q(*)=0.9*max(100,81)=90 

Or, 
If path B is seen first, Q(*)=0.9*max(100,0)=90 
Then A is seen, Q(*)=0.9*max(100,81)=90 

Q values increase but never decrease 

γ=0.9 

[Alpaydin 2004 © The MIT Press] 
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€ 

V st( )←V st( ) +η rt+1 + γV st+1( ) −V st( )( )

Nondeterministic Rewards and Actions 

  When next states and rewards are 
nondeterministic (there is an opponent or 
randomness in the environment), we keep 
averages (expected values) instead as 
assignments 

  Q-learning (Watkins and Dayan, 1992): 

  Learning V (TD-learning: Sutton, 1988) 

€ 

ˆ Q st ,at( )← ˆ Q st ,at( ) +η rt +1 + γmax
at+1

ˆ Q st +1,at +1( ) − ˆ Q st ,at( ) 
 
  

 
 

backup 

[Alpaydin 2004 © The MIT Press] 
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TD-Gammon 

Start with a random network 
Play very many games against self 
Learn a value function from this simulated experience 

Action selection
by 2–3 ply search

Tesauro, 1992–1995

[R. S. Sutton and A. G. Barto]

Program Training 
games 

Opponents Results 

TDG 1.0 300,000 3 experts -13 pts/51 games 

TDG 2.0 800,000 5 experts -7 pts/38 games 

TDG 2.1 1,500,000 1 expert -1 pt/40 games 
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Review 

  Reinforcement Learning 
  How different from supervised, unsupervised? 

  Key components 
  Actions, states, transition probs, rewards 
  Markov Decision Process 
  Episodic vs. continuing tasks 
  Value functions, optimal value functions 

  Learn: policy (based on V, Q) 
  Model-based: value iteration, policy iteration 
  TD learning  

  Deterministic: backup rules (max) 
  Nondeterministic: TD learning, Q-learning (running avg) 
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Ensemble Learning 

Chapter 15 
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What is Ensemble Learning? 

  “No Free Lunch” Theorem 
  No single algorithm wins all the time! 

  Ensemble: collection of base learners 
  Combine the strengths of each to make a super-learner 
  Also considered “meta-learning” 

  How can you get different learners? 

  How can you combine learners? 
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Where do Learners come from? 

  Different learning algorithms 
  Algorithms with different choice for parameters 
  Data set with different features 
  Data set = different subsets 
  Different sub-tasks 
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Exercise: x’s and o’s 
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Combine Learners: Voting 

  Linear combination 
(weighted vote) 

  Classification  
€ 

y = w jd j
j=1

L

∑

w j ≥ 0  and  w j
j=1

L

∑ =1

€ 

yi = w jd ji
j=1

L

∑
  

€ 

P Ci | x( ) = P Ci | x,M j( )
all models M j

∑ P M j( )
Bayesian 

[Alpaydin 2004 © The MIT Press] 
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Different Learners: Bagging 

  Bagging = “bootstrap aggregation” 
  Bootstrap: draw N items from X with replacement 

  Want “unstable” learners 
  Unstable: high variance 
  Decision trees and ANNs are unstable 
  K-NN is stable 

  Bagging 
  Train L learners on L bootstrap samples 
  Combine outputs by voting 
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Different Learners: Boosting 

  Boosting: train next learner on mistakes made by 
previous learner(s) 

  Want “weak” learners 
  Weak: P(correct) > 50%, but not necessarily by a lot 
  Idea: solve easy problems with simple model 
  Save complex model for hard problems 
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Original Boosting 

1.  Split data X into {X1, X2, X3} 
2.  Train L1 on X1 

  Test L1 on X2 

3.  Train L2 on L1’s mistakes on X2 (plus some right) 
  Test L1 and L2 on X3 

4.  Train L3 on disagreements between L1 and L2 
  Testing: apply L1 and L2; if disagree, use L3 

  Drawback: need large X 
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AdaBoost = Adaptive Boosting 

  Arbitrary number of base learners 
  Re-use data set (like bagging) 
  Use errors to adjust probability of drawing samples 

for next learner 
  Reduce probability if it’s correct 

  Testing: vote, weighted by training accuracy 

  Key difference from bagging: 
  Data sets not chosen by chance; instead use performance of 

previous learners to select data 
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AdaBoost 

[Alpaydin 2004 © The MIT Press] 
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AdaBoost Applet 

  http://www.cs.ucsd.edu/~yfreund/adaboost/index.html 
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Summary: Key Points for Today 

  Reinforcement Learning 
  Value and Return functions 
  Model-based learning 
  TD-learning 

  Deterministic: dynamic programming for best policy 
  Non-deterministic: Q-learning, TD-learning 

  No Free Lunch theorem 
  Ensemble: combine learners 

  Voting 
  Bagging 
  Boosting 
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Next Time 

  Reading question volunteers: 

  Final Project Presentations 
  Use order on website 

  Submit slides on CSNS by midnight March 13 
  No, really 
  You may not be able to present if you don’t 

  Reports are due to CSNS midnight March 14 
  Early submission: March 9 


