CS 461: Machine Learning Lecture 9

Dr. Kiri Wagstaff wkiri@wkiri.com

3/7/09

CS 461, Winter 2009

1

Plan for Today

- Reinforcement Learning
- Ensemble Learning
 - How to combine forces?
 - Voting
 - Bagging
 - Boosting
- Evaluations

3/7/09

Reinforcement Learning

Chapter 16

2/28/09

Summary: Reinforcement Learning

- Reinforcement Learning
 - How different from supervised, unsupervised?
- Key components
 - Actions, states, transition probs, rewards
 - Markov Decision Process
 - Episodic vs. continuing tasks
 - Value functions, optimal value functions
- How to learn a good policy?

Define a reinforcement learning problem: Drive a car

- States?
- Actions?
- Reward?

Value Functions

The value of a state = expected return starting from that state; depends on the agent's policy:

State - value function for policy π **:**

$$V^{\pi}(s) = E_{\pi} \left\{ R_{t} \mid s_{t} = s \right\} = E_{\pi} \left\{ \sum_{k=0}^{\infty} \gamma^{k} r_{t+k+1} \mid s_{t} = s \right\}$$

 The value of taking an action in a state under policy π = expected return starting from that state, taking that action, and then following π:

Action - value function for policy π :

$$Q^{\pi}(s,a) = E_{\pi} \left\{ R_t \mid s_t = s, a_t = a \right\} = E_{\pi} \left\{ \sum_{k=0}^{\infty} \gamma^k r_{t+k+1} \mid s_t = s, a_t = a \right\}$$

2/28/09

6

Bellman Equation for a Policy π

The basic idea:

$$\begin{aligned} R_{t} &= r_{t+1} + \gamma r_{t+2} + \gamma^{2} r_{t+3} + \gamma^{3} r_{t+4} \cdots \\ &= r_{t+1} + \gamma \Big(r_{t+2} + \gamma r_{t+3} + \gamma^{2} r_{t+4} \cdots \Big) \\ &= r_{t+1} + \gamma R_{t+1} \end{aligned}$$

So:

$$V^{\pi}(s) = E_{\pi} \{ R_t | s_t = s \}$$

= $E_{\pi} \{ r_{t+1} + \gamma V^{\pi}(s_{t+1}) | s_t = s \}$

Or, without the expectation operator:

$$V^{\pi}(s) = \sum_{a} \pi(s,a) \sum_{s'} P^{a}_{ss'} \Big[R^{a}_{ss'} + \gamma V^{\pi}(s') \Big]$$

2/28/09

CS 461, Winter 2009

[R. S. Sutton and A. G. Barto]

Optimal Value Functions

- For finite MDPs, policies can be partially ordered: $\pi \ge \pi'$ if and only if $V^{\pi}(s) \ge V^{\pi'}(s)$ for all $s \in S$
- Optimal policy = π^*
- Optimal state-value function: $V^*(s) = \max_{\pi} V^{\pi}(s)$ for all $s \in S$
- Optimal action-value function:

 $Q^*(s,a) = \max_{\pi} Q^{\pi}(s,a)$ for all $s \in S$ and $a \in A(s)$

This is the expected return for taking action *a* in state *s* and thereafter following an optimal policy.

Why Optimal State-Value Functions are Useful

Any policy that is greedy with respect to V^* is an optimal policy.

Therefore, given V^* , one-step-ahead search produces the long-term optimal actions.

Given Q^* , the agent does not even have to do a one-step-ahead search:

$$\pi^*(s) = \arg \max_{a \in A(s)} Q^*(s, a)$$

2/28/09

Model-Based Learning

- Environment, $P(s_{t+1} | s_t, a_t)$, $p(r_{t+1} | s_t, a_t)$, is known
- There is no need for exploration
- Can be solved using dynamic programming
- Solve for

$$V^{*}(s_{t}) = \max_{a_{t}} \left(E[r_{t+1}] + \gamma \sum_{s_{t+1}} P(s_{t+1} \mid s_{t}, a_{t}) V^{*}(s_{t+1}) \right)$$

Optimal policy

$$\pi^{*}(s_{t}) = \arg \max_{a_{t}} \left(E[r_{t+1} \mid s_{t}, a_{t}] + \gamma \sum_{s_{t+1}} P(s_{t+1} \mid s_{t}, a_{t}) V^{*}(s_{t+1}) \right)$$

2/28/09

Temporal Difference Learning

- Environment, P (s_{t+1} | s_t, a_t), p (r_{t+1} | s_t, a_t), is not known; model-free learning
- There is need for exploration to sample from

$$P(s_{t+1} | s_t, a_t) \text{ and } p(r_{t+1} | s_t, a_t)$$

Exploration vs. Exploitation

- Use the reward received in the next time step to update the value of current state (action)
- The temporal difference between the value of the current action and the value discounted from the next state

Deterministic Rewards and Actions

Deterministic: single possible reward and next state

$$Q(s_t, a_t) = r_{t+1} + \gamma \max_{a_{t+1}} Q(s_{t+1}, a_{t+1})$$

Used as an update rule (backup)

$$\hat{Q}(s_t, a_t) \leftarrow r_{t+1} + \gamma \max_{a_{t+1}} \hat{Q}(s_{t+1}, a_{t+1})$$

 Updates happen only after reaching the reward (then are "backed up")

Starting at zero, Q values increase, never decrease

Consider the value of action marked by `*': If path A is seen first, Q(*)=0.9*max(0,81)=73Then B is seen, Q(*)=0.9*max(100,81)=90Or, If path B is seen first, Q(*)=0.9*max(100,0)=90Then A is seen, Q(*)=0.9*max(100,81)=90

Q values increase but never decrease

2/28/09

Nondeterministic Rewards and Actions

- When next states and rewards are nondeterministic (there is an opponent or randomness in the environment), we keep averages (expected values) instead as assignments
- Q-learning (Watkins and Dayan, 1992):

$$\hat{Q}(s_t, a_t) \leftarrow \hat{Q}(s_t, a_t) + \eta \left(r_{t+1} + \gamma \max_{a_{t+1}} \hat{Q}(s_{t+1}, a_{t+1}) - \hat{Q}(s_t, a_t) \right)$$

Learning V (TD-learning: Sutton, 1988)

$$V(s_t) \leftarrow V(s_t) + \eta \left(r_{t+1} + \gamma V(s_{t+1}) - V(s_t) \right)$$

backup

TD-Gammon

Tesauro, 1992–1995

Start with a random network Play very many games against self Action selection by 2–3 ply search

Learn a value function from this simulated experience

Program	Training games	Opponents	Results
TDG 1.0	300,000	3 experts	-13 pts/51 games
TDG 2.0	800,000	5 experts	-7 pts/38 games
TDG 2.1	1,500,000	1 expert	-1 pt/40 games

2/28/09

Reinforcement Learning

- How different from supervised, unsupervised?
- Key components
 - Actions, states, transition probs, rewards
 - Markov Decision Process
 - Episodic vs. continuing tasks
 - Value functions, optimal value functions
 - Learn: policy (based on V, Q)
 - Model-based: value iteration, policy iteration
 - TD learning
 - Deterministic: backup rules (max)
 - Nondeterministic: TD learning, Q-learning (running avg)

white pieces move

black pieces

move clockwise

counterclockwise

18 17 16 15 14 13

: •

Ensemble Learning

Chapter 15

3/7/09

CS 461, Winter 2009

17

What is Ensemble Learning?

- "No Free Lunch" Theorem
 - No single algorithm wins all the time!
- Ensemble: collection of base learners
 - Combine the strengths of each to make a super-learner
 - Also considered "meta-learning"
- How can you get different learners?
- How can you combine learners?

Where do Learners come from?

- Different learning algorithms
- Algorithms with different choice for parameters
- Data set with different features
- Data set = different subsets
- Different sub-tasks

3/7/09

Exercise: x's and o's

3/7/09

Combine Learners: Voting

 Linear combination (weighted vote)

$$y = \sum_{j=1}^{L} w_j d_j$$
$$w_j \ge 0 \text{ and } \sum_{j=1}^{L} w_j = 1$$

Classification

$$y_i = \sum_{j=1}^L w_j d_{ji}$$

$$P(C_i | x) = \sum_{\text{all models } \mathcal{M}_j} P(C_i | x, \mathcal{M}_j) P(\mathcal{M}_j)$$

3/7/09

Different Learners: Bagging

- Bagging = "bootstrap aggregation"
 - Bootstrap: draw N items from X with replacement
- Want "unstable" learners
 - Unstable: high variance
 - Decision trees and ANNs are unstable
 - K-NN is stable
 - Bagging
 - Train L learners on L bootstrap samples
 - Combine outputs by voting

Different Learners: Boosting

- Boosting: train next learner on mistakes made by previous learner(s)
- Want "weak" learners
 - Weak: P(correct) > 50%, but not necessarily by a lot
 - Idea: solve easy problems with simple model
 - Save complex model for hard problems

Original Boosting

- 1. Split data X into {X1, X2, X3}
- 2. Train L1 on X1
 - Test L1 on X2
- 3. Train L2 on L1's mistakes on X2 (plus some right)
 - Test L1 and L2 on X3
- 4. Train L3 on disagreements between L1 and L2
- Testing: apply L1 and L2; if disagree, use L3
- Drawback: need large X

AdaBoost = Adaptive Boosting

- Arbitrary number of base learners
- Re-use data set (like bagging)
- Use errors to adjust probability of drawing samples for next learner
 - Reduce probability if it's correct
- Testing: vote, weighted by training accuracy
- Key difference from bagging:
 - Data sets not chosen by chance; instead use performance of previous learners to select data

AdaBoost

Training:

For all $\{x^t, r^t\}_{t=1}^N \in \mathcal{X}$, initialize $p_1^t = 1/N$ For all base-learners $j = 1, \ldots, L$ Randomly draw \mathcal{X}_j from \mathcal{X} with probabilities p_j^t Train d_i using \mathcal{X}_i For each (x^t, r^t) , calculate $y_j^t \leftarrow d_j(x^t)$ Calculate error rate: $\epsilon_j \leftarrow \sum_t p_j^t \cdot 1(y_j^t \neq r^t)$ If $\epsilon_i > 1/2$, then $L \leftarrow j - 1$; stop $\beta_j \leftarrow \epsilon_j / (1 - \epsilon_j)$ For each (x^t, r^t) , decrease probabilities if correct: If $y_j^t = r^t \ p_{j+1}^t \leftarrow \beta_j p_j^t$ Else $p_{j+1}^t \leftarrow p_j^t$ Normalize probabilities: $Z_j \leftarrow \sum_t p_{j+1}^t; \quad p_{j+1}^t \leftarrow p_{j+1}^t / Z_j$ Testing: Given x, calculate $d_i(x), j = 1, \ldots, L$ Calculate class outputs, i = 1, ..., K: $y_i = \sum_{j=1}^{L} \left(\log \frac{1}{\beta_j} \right) d_{ji}(x)$

3/7/09

AdaBoost Applet

<u>http://www.cs.ucsd.edu/~yfreund/adaboost/index.html</u>

3/7/09

Summary: Key Points for Today

Reinforcement Learning

- Value and Return functions
- Model-based learning
- TD-learning
 - Deterministic: dynamic programming for best policy
 - Non-deterministic: Q-learning, TD-learning
- No Free Lunch theorem
- Ensemble: combine learners
 - Voting
 - Bagging
 - Boosting

Next Time

- Reading question volunteers:
- Final Project Presentations
 - Use order on website

Submit slides on CSNS by midnight March 13

- No, really
- You may not be able to present if you don't
- Reports are due to CSNS midnight March 14
 - Early submission: March 9