
3/7/09 CS 461, Winter 2009 1 

CS 461: Machine Learning 
Lecture 9 

Dr. Kiri Wagstaff 
wkiri@wkiri.com 



3/7/09 CS 461, Winter 2009 2 

Plan for Today 

  Reinforcement Learning 

  Ensemble Learning 
  How to combine forces? 
  Voting 
  Bagging 
  Boosting 

  Evaluations 



2/28/09 CS 461, Winter 2009 3 

Reinforcement Learning 

Chapter 16 



2/28/09 CS 461, Winter 2009 4 

Summary: Reinforcement Learning 

  Reinforcement Learning 
  How different from supervised, unsupervised? 

  Key components 
  Actions, states, transition probs, rewards 
  Markov Decision Process 
  Episodic vs. continuing tasks 
  Value functions, optimal value functions 

  How to learn a good policy? 



2/28/09 CS 461, Winter 2009 5 

Define a reinforcement learning problem: 
Drive a car 

  States? 
  Actions? 
  Reward? 



2/28/09 CS 461, Winter 2009 6 

Value Functions 

State - value function for policy π :

Vπ (s) = Eπ Rt st = s{ } = Eπ γ krt+k +1 st = s
k =0

∞

∑ 
 
 

 
 
 

Action- value function for policy π :

Qπ (s, a) = Eπ Rt st = s, at = a{ } = Eπ γ krt+ k+1 st = s,at = a
k= 0

∞

∑ 
 
 

 
 
 

  The value of a state = expected return starting 
from that state; depends on the agent’s policy: 

  The value of taking an action in a state under 
policy π  = expected return starting from that 
state, taking that action, and then following π : 

[R. S. Sutton and A. G. Barto]




2/28/09 CS 461, Winter 2009 7 

Bellman Equation for a Policy π 

  

€ 

Rt = rt+1 + γ rt+2 + γ 2rt+3 + γ 3rt+4

= rt+1 + γ rt+2 + γ rt+3 + γ 2rt+4( )
= rt+1 + γRt+1

The basic idea: 


So: 


€ 

V π (s) = Eπ Rt st = s{ }
= Eπ rt+1 + γV π st+1( ) st = s{ }

Or, without the expectation operator: 


€ 

V π (s) = π (s,a) Ps ′ s 
a Rs ′ s 

a + γV π ( ′ s )[ ]
′ s 
∑

a
∑

[R. S. Sutton and A. G. Barto]




2/28/09 CS 461, Winter 2009 8 

π ≥ ′ π     if and only if  Vπ (s) ≥ V ′ π (s)  for all s ∈S

Optimal Value Functions 

  For finite MDPs, policies can be partially ordered:  

  Optimal policy = π * 
  Optimal state-value function: 

  Optimal action-value function: 

€ 

V ∗(s) = max
π
V π (s)   for all  s∈ S

€ 

Q∗(s,a) = max
π
Qπ (s,a)  for all  s∈ S and a∈ A(s)

This is the expected return for taking action a in state s  
and thereafter following an optimal policy.


[R. S. Sutton and A. G. Barto]




2/28/09 CS 461, Winter 2009 9 

Why Optimal State-Value Functions are Useful 

V∗

V∗

Any policy that is greedy with respect to       is an optimal policy.


Therefore, given     , one-step-ahead search produces the 

long-term optimal actions.


[R. S. Sutton and A. G. Barto]


Given      , the agent does not even

have to do a one-step-ahead search:  


Q*

π∗(s) = argmax
a∈A (s)

Q∗(s, a)



2/28/09 CS 461, Winter 2009 10 

  Environment, P (st+1 | st , at ), p (rt+1 | st , at ), is 
known 

  There is no need for exploration 
  Can be solved using dynamic programming 
  Solve for 

  Optimal policy 

Model-Based Learning 

€ 

V * st( ) =max
at

E rt+1[ ] + γ P st+1 | st ,at( )
st+1

∑ V * st+1( )
 

 
  

 

 
  

€ 

π * st( ) = arg max
at

E rt+1 | st ,at[ ] + γ P st+1 | st ,at( )
st+1

∑ V * st+1( )
 

 
  

 

 
  

[Alpaydin 2004 © The MIT Press] 



2/28/09 CS 461, Winter 2009 11 

Temporal Difference Learning 

  Environment, P (st+1 | st , at ), p (rt+1 | st , at ),  
is not known; model-free learning 

  There is need for exploration to sample from  
 P (st+1 | st , at ) and p (rt+1 | st , at ) 
  Exploration vs. Exploitation 

  Use the reward received in the next time step to 
update the value of current state (action) 

  The temporal difference between the value of the 
current action and the value discounted from the 
next state  

[Alpaydin 2004 © The MIT Press] 



2/28/09 CS 461, Winter 2009 12 

Deterministic Rewards and Actions 

  Deterministic: single possible reward and next state 

  Used as an update rule (backup) 

  Updates happen only after reaching the reward (then 
are “backed up”) 

Starting at zero, Q values increase, never decrease 

( ) ( )111
1

max +++
+

γ+= tt
a

ttt a,sQra,sQ
t

( ) ( )111
1

max +++
+

γ+← tt
a

ttt a,sQ̂ra,sQ̂
t

[Alpaydin 2004 © The MIT Press] 



2/28/09 CS 461, Winter 2009 13 

Consider the value of action marked by ‘*’: 
If path A is seen first, Q(*)=0.9*max(0,81)=73 
Then B is seen, Q(*)=0.9*max(100,81)=90 

Or, 
If path B is seen first, Q(*)=0.9*max(100,0)=90 
Then A is seen, Q(*)=0.9*max(100,81)=90 

Q values increase but never decrease 

γ=0.9 

[Alpaydin 2004 © The MIT Press] 



2/28/09 CS 461, Winter 2009 14 

€ 

V st( )←V st( ) +η rt+1 + γV st+1( ) −V st( )( )

Nondeterministic Rewards and Actions 

  When next states and rewards are 
nondeterministic (there is an opponent or 
randomness in the environment), we keep 
averages (expected values) instead as 
assignments 

  Q-learning (Watkins and Dayan, 1992): 

  Learning V (TD-learning: Sutton, 1988) 

€ 

ˆ Q st ,at( )← ˆ Q st ,at( ) +η rt +1 + γmax
at+1

ˆ Q st +1,at +1( ) − ˆ Q st ,at( ) 
 
  

 
 

backup 

[Alpaydin 2004 © The MIT Press] 



2/28/09 CS 461, Winter 2009 15 

TD-Gammon 

Start with a random network 
Play very many games against self 
Learn a value function from this simulated experience 

Action selection

by 2–3 ply search


Tesauro, 1992–1995


[R. S. Sutton and A. G. Barto]


Program Training 
games 

Opponents Results 

TDG 1.0 300,000 3 experts -13 pts/51 games 

TDG 2.0 800,000 5 experts -7 pts/38 games 

TDG 2.1 1,500,000 1 expert -1 pt/40 games 



3/7/09 CS 461, Winter 2009 16 

Review 

  Reinforcement Learning 
  How different from supervised, unsupervised? 

  Key components 
  Actions, states, transition probs, rewards 
  Markov Decision Process 
  Episodic vs. continuing tasks 
  Value functions, optimal value functions 

  Learn: policy (based on V, Q) 
  Model-based: value iteration, policy iteration 
  TD learning  

  Deterministic: backup rules (max) 
  Nondeterministic: TD learning, Q-learning (running avg) 



3/7/09 CS 461, Winter 2009 17 

Ensemble Learning 

Chapter 15 



3/7/09 CS 461, Winter 2009 18 

What is Ensemble Learning? 

  “No Free Lunch” Theorem 
  No single algorithm wins all the time! 

  Ensemble: collection of base learners 
  Combine the strengths of each to make a super-learner 
  Also considered “meta-learning” 

  How can you get different learners? 

  How can you combine learners? 



3/7/09 CS 461, Winter 2009 19 

Where do Learners come from? 

  Different learning algorithms 
  Algorithms with different choice for parameters 
  Data set with different features 
  Data set = different subsets 
  Different sub-tasks 



3/7/09 CS 461, Winter 2009 20 

Exercise: x’s and o’s 



3/7/09 CS 461, Winter 2009 21 

Combine Learners: Voting 

  Linear combination 
(weighted vote) 

  Classification  
€ 

y = w jd j
j=1

L

∑

w j ≥ 0  and  w j
j=1

L

∑ =1

€ 

yi = w jd ji
j=1

L

∑
  

€ 

P Ci | x( ) = P Ci | x,M j( )
all models M j

∑ P M j( )
Bayesian 

[Alpaydin 2004 © The MIT Press] 



3/7/09 CS 461, Winter 2009 22 

Different Learners: Bagging 

  Bagging = “bootstrap aggregation” 
  Bootstrap: draw N items from X with replacement 

  Want “unstable” learners 
  Unstable: high variance 
  Decision trees and ANNs are unstable 
  K-NN is stable 

  Bagging 
  Train L learners on L bootstrap samples 
  Combine outputs by voting 



3/7/09 CS 461, Winter 2009 23 

Different Learners: Boosting 

  Boosting: train next learner on mistakes made by 
previous learner(s) 

  Want “weak” learners 
  Weak: P(correct) > 50%, but not necessarily by a lot 
  Idea: solve easy problems with simple model 
  Save complex model for hard problems 



3/7/09 CS 461, Winter 2009 24 

Original Boosting 

1.  Split data X into {X1, X2, X3} 
2.  Train L1 on X1 

  Test L1 on X2 

3.  Train L2 on L1’s mistakes on X2 (plus some right) 
  Test L1 and L2 on X3 

4.  Train L3 on disagreements between L1 and L2 
  Testing: apply L1 and L2; if disagree, use L3 

  Drawback: need large X 



3/7/09 CS 461, Winter 2009 25 

AdaBoost = Adaptive Boosting 

  Arbitrary number of base learners 
  Re-use data set (like bagging) 
  Use errors to adjust probability of drawing samples 

for next learner 
  Reduce probability if it’s correct 

  Testing: vote, weighted by training accuracy 

  Key difference from bagging: 
  Data sets not chosen by chance; instead use performance of 

previous learners to select data 



3/7/09 CS 461, Winter 2009 26 

AdaBoost 

[Alpaydin 2004 © The MIT Press] 



3/7/09 CS 461, Winter 2009 27 

AdaBoost Applet 

  http://www.cs.ucsd.edu/~yfreund/adaboost/index.html 



3/7/09 CS 461, Winter 2009 28 

Summary: Key Points for Today 

  Reinforcement Learning 
  Value and Return functions 
  Model-based learning 
  TD-learning 

  Deterministic: dynamic programming for best policy 
  Non-deterministic: Q-learning, TD-learning 

  No Free Lunch theorem 
  Ensemble: combine learners 

  Voting 
  Bagging 
  Boosting 



3/7/09 CS 461, Winter 2009 29 

Next Time 

  Reading question volunteers: 

  Final Project Presentations 
  Use order on website 

  Submit slides on CSNS by midnight March 13 
  No, really 
  You may not be able to present if you don’t 

  Reports are due to CSNS midnight March 14 
  Early submission: March 9 


