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ABSTRACT

Moving target indication – locating and estimating the veloc-
ity of moving objects – is of vital importance for both recon-
naissance and surveillance. Here we describe novel data anal-
ysis methods to interpret such target detections using passive,
multi-angle imagery from the Multi-angle Imaging Spectro-
Radiometer (MISR) instrument on NASA’s Terra Earth Ob-
serving System satellite. MISR observes a 380-km swath in
visible and near-infrared spectral bands with nine pushbroom
cameras over a seven minute period with a single-pixel reso-
lution of 275 m or 1,100 m depending on the band and cam-
era. We demonstrate that sub-pixel targets such as ships can
be be unambiguously identified and tracked in ocean images
with a minimum detectable speed of 0.68 ms−1 (1.3 knots),
which is more than four times smaller than similar synthetic
aperture radar-based systems. MISR’s multiple views further
enable the estimation of target trajectory. Finally, data mining
methods can be employed to produce meaningful summaries
of target frequency, behavior, and changes over time.

Index Terms— moving target indication, MISR, satellite
imaging, data mining

1. INTRODUCTION

Target detection and moving target indication (MTI) – the task
of locating and estimating the velocity of moving objects –
are of vital important for both reconnaissance and surveil-
lance. Synthetic aperture radar (SAR) systems, with their
high spatial resolution, all weather, and day/night capabil-
ity, have demonstrated success for target identification and
ground MTI (GMTI), particularly over the ocean (e.g., [1],
[2], [3]). However, spaceborne SAR systems have limitations
due to their significant power requirements, relatively large
antenna size, and narrow swaths (∼100 km). In addition,
slowly moving targets are challenging for a single radar sys-
tem, which may only be able to detect targets moving faster
than about 4 ms−1 (7.8 knots) in the most optimal conditions
[4].
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Ship detection in SAR imagery, in particular, has received
a great deal of attention. A common approach is to construct
a land mask, identify bright points, then search around these
initial targets for wakes to improve discriminability [1]. The
target detection step often employs an adaptive threshold con-
stant false alarm rate (CFAR) approach [4]. Challenges in-
clude compensating for SAR speckle; image blurring from
lack of scene coherence, which can be especially important
for ocean surfaces; and azimuth image shift [5].

Here we describe a novel approach to synthesize and in-
terpret information about moving targets over the ocean us-
ing passive, moderate resolution, multi-angle imagery from
the Multi-angle Imaging SpectroRadiometer (MISR) instru-
ment that has been operational on NASA’s Terra satellite since
early 2000. We provide both a theoretical analysis and an em-
pirical demonstration that targets such as ships, despite being
much smaller than the 275-m MISR red band pixel size, can
be unambiguously detected in the data. This demonstration is
performed via careful manual extraction, reserving the devel-
opment and validation of an automated detection system for
future work. In support of the practicality of the approach, we
provide examples of the detectibility of such targets via image
histogram analysis. Assuming some source of detected tar-
gets, whether manual or automatic, we further describe meth-
ods to aggregate and analyze this information to extract mean-
ingful spatial and temporal summaries of target occurrence
and behavior.

2. SHIP DETECTION WITHIN MODERATE
RESOLUTION IMAGERY FROM MISR

Although not designed for these tasks, the capabilities of the
MISR instrument make it uniquely suited for target detection
and MTI over the ocean. MISR is a pushbroom imaging sys-
tem that acquires visible and near-infrated imagery across an
approximately 380-km-wide common swath at resolutions of
275 m or 1,100 m depending on the spectral band and camera
with a georegistration better than ∼0.2 pixels (55 m) [6]. The
MISR swath is relatively wide in comparison to typical SAR-
based systems, providing the potential for more extensive de-
tection and tracking. Unlike the single snapshot provided by
a SAR image, every location with the common swath is im-



aged from nine different angles over a span of approximately
seven minutes, yielding multiple estimates of target location
and resultant motion that can be combined to produce more
robust results. Current operational processing of the MISR
data provides stereo-photogrammetric cloud-top height and
motion retrievals [7][8][9].

The presence of ships within 275-m spatial resolution
MISR imagery has been noted anecdotally numerous times
and an example has even been published in the online MISR
image gallery (https://misr.jpl.nasa.gov/images/PIA03422-
AaBaCaDa O4344 NCcoast.gif). Although ships are much
smaller than a single pixel, they are bright enough relative to
the ocean background to be clearly visible in MISR imagery.
This is the same principle by which stars are visible to the
naked eye in the night sky, even though they do not subtend
any appreciable angular diameter. Detection in the MISR data
is enhanced by the 14-bit image depth and the high signal-to-
noise (SNR) of the instrument. Figure 1 shows four examples
of ships observed in different viewing conditions from MISR.
The 14-bit digital numbers (DNs), ranging from 0 to 16,383,
have been manually stretched to fit into the 8-bit image range
extending from 0 to 255 independently for each case. Note
that the features in Fig. 1 span multiple pixels, increasing the
confidence of a given detection.

Fig. 1. Four examples of ships in dynamically stretched
MISR data showing the multi-pixel features they generate: (a)
Red Sea, 2 April 2003; (b) Atlantic coast off Long Island, NY,
1 April 2008; (c) Strait of Malacca, 18 August 2009; (d) three
ships, Gulf of Oman, 24 February 2010.

To quantitatively assess the ability to discriminate ships
from the background in these images, Fig. 2 shows pixel his-

tograms for each of the scenes in Fig. 1. These histograms
demonstrate that the pixels belonging to ships are well sepa-
rated from the distribution corresponding to the ocean back-
ground. Signal-to-noise (SNR) values were determined by
first fitting a Gaussian distribution to the clear ocean DN val-
ues. Based on this, the target SNR is:

SNR =
t

σ
, (1)

where t is the DN value of the target minus the mean DN for
the background and σ is the standard deviation of the Gaus-
sian fit. In all cases, the SNR meets or exceeds the “Rose
criterion” of five, which indicates that the signal is readily
detectable against the background [10]. If the background
is well approximated by a Gaussian distribution, the Rose
criterion is equivalent to the target differing from the mean
background by five or more standard deviations, which has
the probability of occurring by chance of less than 0.00006%
[11]. Theoretically, a specularly reflecting target as small as
1.6 m2 is detectable in MISR imagery under ideal viewing
conditions.

Fig. 2. Histograms of MISR red band digital numbers
(DNs) for scenes displayed in Fig. 1. The SNR in deci-
bels (SNRdB)is calculated by multiplying the log base 10
of the SNR by 20. Most values belong to clear ocean
(low DN), with high values corresponding to ships. (a)
SNR=5, SNRdB=13.9; (b) SNR=10, SNRdB=20.4; (c)
SNR=7, SNRdB=16.5; (d) SNR=18, SNRdB=24.9.



3. MANUAL TARGET EXTRACTION

Subtracting the mean background values from dark ocean
scenes, which can be accomplished through the application
of an edge-preserving bilateral filter (e.g., [12]) and retaining
the residuals, reveals rich detail contained in the MISR 14-bit
data. Processing images from all nine MISR cameras in this
way allows targets to be tracked manually through the image
sequence, as demonstrated in Fig. 3 for imagery acquired
near Cape Cod on 17 April 2008. In addition to manual target
identification, quantitative information on target speed and
direction can be extracted by measuring the pixel offset and
taking into account the time difference between consecutive
views of the scene. Since the MISR data are projected to the
Earth ellipsoid, features on the ocean surface do not have any
parallax, so any observed pixel shift is due to true motion
[6]. The high speed and pixel “smearing” of the bottommost
target in Fig. 3 indicates that it is most likely an airplane in
flight.

Fig. 3. Multiangle color composite [+70◦ (red), -46◦ (green),
-70◦ (blue] from MISR images (17 April 2008) enhanced by
the application of a bilateral filter. Long Island, NY, is at the
upper edge of the image. Moving targets appear as sequences
of red, green, and blue points. Yellow arrows (short = ship,
long = airplane) indicate manually derived trajectories (speed
and direction).

The uncertainty in target locations is a combination of the
mean (random) error within a 275 m × 275 m region, which
is 105 m, and the mean geolocation error in MISR data of
0.2 pixels or 55 m. Adding these in quadrature yields a mean
location error of about 120 m. Trajectories for each target

can be expressed as a heading (relative to north) and a speed
in ms−1 or knots. The minimum detectable speed (a single
pixel shift over the total observing time of 6.8 minutes) is
0.68 ms−1 (1.3 knots), far lower than the typical figure given
for SAR-based systems of 4 ms−1 [4]. The uncertainty in
this speed is ±0.3 ms−1 (±0.6 knots). The typical minimum
speed for an ocean-going ship is about 3 knots, which is well
within the detection limit when using MISR data.

4. DATA MINING AND VISUALIZATION TO
EXTRACT HIGH LEVEL KNOWLEDGE

MTI analysis of MISR imagery would ultimately yield a
global catalog of targets that can be updated with every new
orbit acquisition. The target catalog generated would repre-
sent a compressed view of ship activity that would consume
far less space than the raw imagery while focusing attention
on the observed moving target. This represents the first step
in converting raw observations into useful information. How-
ever, the expected size of this catalog would still be so large
that it would present a significant obstacle to human compre-
hension as to what such a data collection means in both space
and time.

The next step in progressing from data to information to
knowledge is to synthesize the target catalog into a map of tar-
get activity. Such an “activity map” serves two purposes: 1) it
provides a high-level visualization of activity for any location
and time period of interest, and 2) it enables automatic iden-
tification of high activity (spatially anomalous) regions. As a
demonstration, we being with an MTI catalog, in which each
target is described by its location, approximate size, speed,
and direction of motion. First, using the location information
alone we generate a smoothed estimate of the spatially dis-
tributed activity by applying a Gaussian filter to the gridded
target frequency data. The two-dimensional Gaussian filter is
given by:

g(x, y) =
1

2πσ2
exp

(
−x

2 + y2

2σ2

)
, (2)

where x and y are the coordinates of a given location and σ
is the standard deviation of the two-dimension Gaussian fil-
ter; larger values of σ generate more smoothing. To obtain
the Gaussian model, we use two-dimensional kernel density
estimation with a Gaussian kernel, which allows us to auto-
matically determine the optimal value of σ for a given target
catalog [13].

An example obtained with this procedure is shown in
Fig. 4, which covers the Cape Cod area for a single day on
1 September 2009. Locations such as Boston Harbor, Provi-
dence Bay, and ship traffic to and from Block and Nantucket
Islands are easily detectable as anomalously high activity
relative to their surroundings. Incorporating additional target
features from the catalog permits each location on the activity



map to be annotated with the average surface target trajectory,
for example.

Fig. 4. (Top Left) MISR nadir view of Cape Cod, 1 September
2009. (Top Right) Moving ships identified through manual in-
spection of MISR imagery. (Bottom Left) Corresponding ac-
tivity map summarizing vehicle activity. (Bottom Right) Sum-
mary map of highest vehicle activity (defined as more than 5
targets per region.

Having provided a synthesis of the spatial information in
the catalog, the final step is to integrate the temporal aspects
of the data. After generating the activity map for a given
MISR orbit, the activity observed in a particular region can
be compared to a model based on archived observations of
the same location to identify temporal anomalies. These in-
dicate a change in activity level (unusually high or unusually
low) that point to an event of possible interest. Such anoma-
lies can be immediately flagged for further investigation by
another asset that possesses higher spatial resolution, but re-
quires precise targeting, for example.

MISR’s multi-year image data archive provides the nec-
essary temporal information for time series analysis and the
identification of long-term patterns. We do not yet have em-
pirical results from this stage of analysis as it requires the
generation of activity maps from a series of MISR observa-
tions – a product requiring the creation of an automatic MTI
system, as it would be infeasible to construct so many maps
manually.

5. CONCLUSIONS

We have demonstrated that sub-pixel ships can be detected
in MISR passive, moderate resolution satellite observations.
Data mining converts observations to intelligence/knowledge
and can help inform follow-up imaging by more capable as-
sets. There is also great potential for the expansion of this

technology to accommodate other sensor types and reconnais-
sance goals.
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