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ABSTRACT
Onboard, in-situ detection of interesting events in time series data
can enable the instrument or sensor to take action in a respon-
sive way. Multivariate time series capture a richer depiction of the
environment at each time step and therefore facilitate the detec-
tion of more subtle or complex events. In this work, we focus on
the detection of events that mark the transition between different
physical environments, as observed by a moving sensor such as
a spacecraft. Our approach is to model such events as anomalies
and employ anomaly detection and hidden state modeling methods
to detect them. We assess RuLSIF, HOT SAX, HMM, and Matrix
Profile methods and propose a novel extension of the Matrix Profile
to multivariate data. We apply these methods to observations of the
magnetosphere collected by the Cassini spacecraft in orbit around
Saturn. Reliable detection of environment transitions could enable
future instruments, such as the Plasma Instrument for Magnetic
Sounding (PIMS) instrument on the Europa Clipper spacecraft, to
adaptively select the best observing mode according to the current
environment, yielding higher quality data.
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1 INTRODUCTION
Time series data consist of a sequence of measurements from a
sensor that can be used to infer properties about the surrounding
environment. For a sensor in motion, such as an instrument on a
spacecraft, changes in the surrounding environment may manifest
as detectable changes in the acquired observations. Online analysis
of the time series data provides the basis for an autonomous system
to decide when to take action due to a change in environment.

We focus on methods for the onboard detection of transition
events that signal when the sensor has moved into a different oper-
ating environment. Many instruments have configurable operating
modes, each of which is best suited for a particular environment.
Detecting when the environment has changed allows the instru-
ment to switch modes and optimize the quality of the collected
data.

A concrete example of a spacecraft instrument that could benefit
from onboard detection of environment transition events is the
Plasma Instrument for Magnetic Sounding (PIMS) instrument on
the upcoming Europa Clipper mission [4, 12]. PIMS will character-
ize the plasma around Jupiter’s moon Europa to understand the
influence of Europa’s ocean on its magnetosphere by recording
the distribution of energies of ions and other charged particles in
the plasma. PIMS will have four observing modes (survey, magne-
tospheric, transition, and ionospheric) that are optimized for the
anticipated plasma conditions in each region (Figure 1). Since Eu-
ropa is too far away from Earth to allow realtime human control,
mission planners will pre-specify the instrument’s operating mode
at each part of the orbit in advance. Uncertainty in the prior knowl-
edge of the location of these boundaries has led to the planned use
of a “transition” mode that alternates between observing modes
as a compromise: it is ideal for neither one but ensures that at
least some useful data is collected. Onboard, in situ detection of the
transitions could enable the instrument to switch adaptively to the
best observing mode and reduce the need for the transition mode.
The result would likely be the opportunity to capture a greater
number of electromagnetic phenomena of scientific interest, at the
best range of observing energies.

We propose the use of anomaly detection and state transition
methods to automatically detect environment transitions. We apply
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Figure 1: PIMSwill operate inmagnetosphericmode far fromEuropa, ionosophericmode close to Europa, and transitionmode
in between. Note that this figure is not drawn to scale.

these methods to data collected by the Cassini Plasma Spectrometer
(CAPS) Electron Spectrometer (ELS) instrument at Saturn as an
analogue for the data to be collected by PIMS at Europa (Section 2).
In Section 3, we describe the algorithms that we expect to be suitable
for use in the computationally limited onboard environment. We
report empirical results on the task of detecting magnetospheric
crossings in CAPS-ELS data (Section 5) and in Section 6 we describe
the next steps to realizing the goal of onboard deployment of the
best performing methods.

2 TIME SERIES DATA FROM
MAGNETOSPHERIC INSTRUMENTS

PIMS is currently under development, and data from the instrument
does not yet exist. For this study, we employed data from CAPS-ELS,
an analogous instrument on the recently completed Cassini mission.
CAPS-ELS measured electron flux as a function of their energy and
direction [16]. The multivariate time series contains observations
roughly every 2 seconds that consist of electron counts tallied in
energy bins that range from 0.53 to 28200 eV.

Data from CAPS-ELS spans the years 2004 to 2012 and includes
2399 known (manually annotated) magnetic field boundary cross-
ings [5]1. These boundaries correspond to Saturn’s magnetopause
(between the magnetosphere and magnetosheath) and bow shock
(between the magnetosheath and the solar wind). Although these
boundaries are unlikely to have exact analogues in the near-Europa
environment, the principles developed herewill help identify bound-
aries that Europa Clipper will observe with PIMS.

2.1 Pre-processing ELS Data
We employed several pre-processing steps to prepare CAPS-ELS
data for analysis. These pre-processing steps would not be needed if
we had access to the original data in the onboard setting. Following
the recommendations of the CAPS PDS User Guide [13], we use data
from the least-obstructed anode 5. The original CAPS-ELS data con-
sists of observations at 63 energy bins, but some observations were
reduced to 32 bins prior to downlink to reduce bandwidth consump-
tion. For consistent dimensionality, we excluded the lowest-energy
bin entirely (due to residual spurious signals) and converted all
remaining 62-bin observations to 31-bin observations by storing
the average value for pairs of adjacent bins.

1Labeled data set: https://doi.org/10.5281/zenodo.3946033

Figure 2: Example 6-hour CAPS-ELS observation containing
both bow shock (black) and magnetopause (red) crossings.

CAPS-ELS data also has an irregular sampling cadence because
some observations adjacent in time were combined prior to down-
link. Further, around 0.6% of individual bin observations are missing
due to downlink gaps. To address both issues, we performed a linear
spline interpolation across the time dimension independently for
each of the 31 bins, at each equally spaced time step. Any negative
counts obtained after interpolation were clipped to 0. On our train-
ing set spanning 180 hours of observations from 2004, fewer than
0.1% of the entries were clipped. The resulting 31-dimensional data
set has a regular sampling cadence of 2 seconds.

To smooth the time series, we convolved it with a Gaussian
kernel, removing high-frequency components. To remove additive
noise, we used either a minimum, median, or maximum filter. The
width of the Gaussian kernel and the filter type were chosen per al-
gorithm via validation. Finally, we employed Anscombe’s transform
to each binned count c to convert the observations (count-based
Poisson distribution) to a variable with an approximately Gaussian

distribution, c →
√
c + 3

8 .

https://doi.org/10.5281/zenodo.3946033
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2.2 Events: Magnetic Field Boundary Crossings
As the Cassini spacecraft orbited Saturn, it repeatedly crossed into
and out of the magnetosphere, magnetosheath, and solar wind re-
gions. There are two event types that we seek to detect in the CAPS-
ELS data: the magnetopause (transition between magnetosphere
and magnetosheath) and the bow shock (between magnetosheath
and solar wind). As illustrated in Figure 2, bow shock crossings are
often more prominent and easier to detect.

Each of these crossings can be further broken down into two
categories, IN and OUT, based how the spacecraft moved relative to
the boundary. The numbers of events of each type observed during
Cassini’s mission, broken down by year, are as follows:

Year BS IN BS OUT MP IN MP OUT Total
2004 18 17 13 12 60
2005 98 97 102 101 398
2006 6 6 49 49 110
2007 91 92 254 253 690
2008 16 16 128 126 286
2009 2 2 86 86 176
2010 23 23 142 142 330
2011 45 45 60 60 210
2012 20 19 21 19 79
All 319 317 855 848 2339

3 TRANSITION DETECTION ALGORITHMS
Our approach is to compute a transition detection score for each
observation in the time series. The baseline algorithm B computes
the Euclidean distance between observation ti ∈ R

d at time i and
the immediately preceding observation ti−1:

Bi = ∥ti − ti−1∥2 (1)

We assessed four unsupervised approaches to detecting tran-
sitions either by modeling states, identifying change points, or
detecting anomalies. A key constraint for in-situ data analysis is the
limited computational resources available on-board the spacecraft,
which restricts our options to algorithms that have low memory
and computational requirements.

First, we used a Hidden Markov Model (HMM)2 to identify
changes in state. Each state sj is modeled by a d-dimensional Gauss-
ian distribution with mean µsj and covariance matrix Σsj , learned
from the data. We compute a dissimilarity matrixDS ∈ Rs×s , where
s is the number of states and each entry is defined as:

DSs1,s2 = KL
(
N

(
µs1 , Σs1

) 

N (
µs2 , Σs2

) )
+

KL
(
N

(
µs2 , Σs2

) 

N (
µs1 , Σs1

) )
using the symmetrized KL-divergence between the learned distri-
butions. The HMM anomaly detection score at time step i is

HMMi = δTi DS δi (2)

where δi = |pi − pi−1 |, the absolute value of the difference in poste-
rior state distributions pi ∈ Rs . The use of the dissimilarity matrix
DS assigns more weight to transitions between dissimilar states.
We use both Bayesian and non-Bayesian HMM models: the pa-
rameters for the non-Bayesian (“vanilla”) HMM are learned via
Expectation Maximization [1], while the Bayesian HMM models
2See https://github.com/hmmlearn/hmmlearn and https://github.com/mattjj/pyhsmm/

the joint distribution over input samples and latent variables as a
“sticky” Hierarchical Dirichlet Process [3] and then averages over
1000 samples of latent variables obtained via Gibbs sampling [11].

We also employed RuLSIF3 (Relative Unconstrained Least Squares
Information Fitting [7] which seeks to identify “change points” in
a time series. The RuLSIF score RS is the symmetrized α-relative
PE-divergence between the distribution Pi ofm observations after
the current time-step i and the distribution P ′i ofm observations
before time-step i .

RSi = PEα
(
Pi



 P ′i ) + PEα (
P ′i



 Pi ) (3)

As in [7], we “pack” the time series by taking subsequences of
length k rather than a single time step at a time. This increases the
dimensionality of each sample by a factor of k .

Finally, we employed two methods for discord or anomaly de-
tection in time series. The first is HOT SAX4 (Heuristically Or-
dered Time series using Symbolic Aggregate ApproXimation) [6].
Let X ∈ Rn×d be a d-dimensional time series of length n and
Xi,w ∈ Rw×d be a z-normalized subsequence of lengthw starting
at time i . Then the HOT SAX score is the minimum distance be-
tween the current subsequence and every other non-overlapping
subsequence of the same length.

HSi = min
|i−j | ≥w
0≤j≤n−w



Xi,w − X j,w



F , (4)

where ∥·∥F represents the Frobenius norm. To compute SAX repre-
sentations of multidimensional subsequences, we use SAX-ZSCORE
[9]. To speed up HOT SAX, we reduced the dimensionality of the
time series using Principal Component Analysis (PCA) to reduce
the data to a lower-dimensional subspace while capturing as much
of the variance as possible.

The second anomaly detection method is based on the Matrix
Profile [15] with a novel extension to operate on multidimensional
data and maximize sensitivity to anomalies5. For a unidimensional
time seriesT of lengthn, letTi,w ∈ Rw be the subsequence of length
w starting at time i . The Matrix ProfileMP ∈ Rn−w+1 records, for
each time i , the minimum Euclidean distance from the z-normalized
subsequence Ti,w to all other non-overlapping z-normalized subse-
quences of lengthw in the time series [15].

MPi = min
|i−j | ≥w
0≤j≤n−w



Ti,w −Tj,w



2 (5)

For ad−dimensional time series, we propose an anomaly-sensitive
Multidimensional Matrix ProfileMMP ∈ Rn−w+1 that consists of
the sum across dimensions d of unidimensional Matrix Profiles
MP (d ) computed independently for each dimension:

MMPi =
∑
d

MP
(d )
i (6)

Subsequences with large nearest-neighbor distances in multiple
dimensions will receive large scores. It is also possible to restrict
sensitivity to the k largest matrix profile distances per time step.
This approach contrasts with the k−dimensional matrix profile

3https://github.com/hoxo-m/densratio_py
4https://github.com/ameya98/saxpy
5https://github.com/JPLMLIA/CAPS-ELS-Transition-Detection

https://github.com/hmmlearn/hmmlearn
https://github.com/mattjj/pyhsmm/
https://github.com/hoxo-m/densratio_py
https://github.com/ameya98/saxpy
https://github.com/JPLMLIA/CAPS-ELS-Transition-Detection
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Table 1: Parameters for bow shock crossing detectors

Algorithm Parameters (No blur if not stated)
Baseline Max Filter (Size 120), Center 10 bins.
HOT SAX Window Sizew = 50, Discords = 2, PCA-5, Max Filter

(Size 120), All 31 bins.
Matrix Profile Window Size w = 100, Noise Correction = 0.6, PCA-

10, Median Filter (Size 120), Center 10 bins.
RuLSIF Window Size = 20, Packing Factor k = 1, Median

Filter (Size 30), All 31 bins.
Bayesian HDP-
HMM

Maximum States = 2, Sticky Coefficient = 0.1, PCA-5,
Median Filter (Size 120), Center 10 bins, Gaussian
Blur σ = 5.

Non-Bayesian
HMM

Number of States = 2, PCA-10, Median Filter (Size
120), All 31 bins, Gaussian Blur σ = 5.

Table 2: Parameters for magnetopause crossing detectors

Algorithm Parameters (No blur if not stated)
Baseline Max Filter (Size 120), Center 10 bins, Gaussian Blur

σ = 5.
HOT SAX Window Size w = 400, Discords = 2, PCA-5, Median

Filter (Size 120), All 31 bins.
Matrix Profile Window Size w = 100, Noise Correction = 0.2, PCA-

10, Max Filter (Size 120), Center 10 bins.
RuLSIF Window Size w = 60, Packing Factor k = 5, Median

Filter (Size 120), All 31 bins.
Bayesian HDP-
HMM

Maximum States = 3, Sticky Coefficient = 0.1, PCA-5,
Median Filter (Size 120), Center 10 bins, Gaussian
Blur σ = 5.

Non-Bayesian
HMM

Number of States = 2, PCA-5, Median Filter (Size 120),
All 31 bins.

defined by Yeh et al. [14] which uses the k smallest values to empha-
size similarity. In this study, we employed all dimensions. We also
incorporated noise correction [10], an improvement that subtracts
out the effect of Gaussian noise in the Matrix Profile computation,
without changing its runtime asymptotically.

This algorithm can be applied to any multidimensional time
series. Computing the Matrix Profiles for each dimension takes
O(n2) time per dimension, for a total ofO(n2d) time, and computing
the sum across dimensions at each time step takes O(nd) time.

4 METHODOLOGY AND METRICS
For each event type, we selected the best parameters for each algo-
rithm (see Table 1 and Table 2) using a training set of all observations
from 2004, which encompass 60 crossing events. Observations from
2005 through 2012 comprise our held-out test set.

We conducted a retrospective evaluation by measuring the re-
liability of the detection scores generated by each algorithm at
each time step. We assessed recall and precision by defining a time
tolerance of ttol minutes and, for each algorithm, generated a list
of detections that exceeded a given score threshold sthres and then
retained only local peak detections (those with scores greater than
all detections within ±

ttol
2 seconds). We defined true positives as

detections within a window that spans 1 minute before and ttol
minutes after a labeled event, false positives as detections outside

of all such windows, and false negatives as labeled events without
any detections within the sensitivity window.

To assess feasibility, we also computed the average runtime for
each algorithm. RuLSIF was the most computationally expensive
method by far, requiring an average of 40 minutes on a 2.1-GHz
processor to process a single 6-hour observation for bow shock
detection and more than 5 hours for magnetopause detection (due
to larger window size w and packing factor k parameters). For
onboard operation we would likely restrict these parameter options.
In contrast, HOT SAX and both HMMmethods required less than a
minute, and the Matrix Profile took an average of about 8 minutes.

5 EXPERIMENTAL RESULTS
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Figure 3: Test performance on data from 2005 to 2012

Results for detecting events in data from 2005 through 2012 us-
ing a ttol value of 20 minutes are shown in Figure 3. We found
that the bow shock crossings were much easier than magnetopause
crossings to reliably detect, as shown in Figure 3(a). In this case,
the best-performing method was the Matrix Profile, with the non-
Bayesian HMM as the next-based performing method. For this
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application, in which a spacecraft instrument will change its ob-
serving mode based on event detections, precision is very important
since false detections will cause unwanted changes. At a required
precision of 0.8, the Matrix Profile achieved a recall of 0.636, and
the non-Bayesian HMM had a recall of 0.583.

However, performance varies significantly across different years
of the mission, indicating that concept drift is a challenge for gen-
eralization. For 2012, both the Matrix Profile and the non-Bayesian
HMM achieved a recall of 0.923, while in 2006, HOT SAX achieved
a recall of 0.750 yet the Matrix Profile (0.083) and non-Bayesian
HMM (0.583) recall scores were much lower (given a precision
threshold of 0.8). We are investigating the use of online methods to
update parameter settings based on the most recent observations
to improve generalization.

For magnetopause detection, the overall best-performingmethod
was the non-Bayesian HMM. Unfortunately, no methods achieved
0.8 precision across all years (Figure 3(b)). The best result observed
was for 2006, in which HOT SAX achieved a recall of 0.146 (at pre-
cision 0.8). MP events are characterized by more diffuse boundaries
and can be difficult to identify visually from CAPS-ELS data alone.
The labeled events that we employed were identified originally from
magnetometer data which can capture those events more clearly.
We are also looking into whether supervised methods that employ
the labeled data directly, rather than approaching the problem as
an anomaly detection task, can improve performance.

6 CONCLUSIONS AND FUTUREWORK
We have demonstrated the detection of magnetic field boundaries
using data from spectrometers such as CAPS-ELS. To our knowl-
edge, this is the first work of its kind. Next, we will develop pro-
totypes of these algorithms in the C programming language and
test them using a PPC750 processor, which has capabilities similar
to those of the processor planned for use on the Europa Clipper
spacecraft. We will employ the BITFLIPS software radiation simula-
tor to assess radiation sensitivity using the methodology employed
for evaluating thermal anomaly detectors in the harsh Europan
radiation environment [2]. We will also assess algorithm resource
consumption given the spacecraft’s existing activities and avail-
able resources using the APGen [8] activity plan generator and
simulation tool.

We are also interested in assessing time series detection in an
online scenario. When making onboard decisions about when to
change an instrument’s observing mode, detections must be made
with respect to only the previously collected observations rather
than the full time series, as employed in the retrospective study
reported in this work. The online version of the detectors would
likely employ a different peak-finding strategy, and it may also
be beneficial to create different detectors for transitions IN versus
OUT of a given environment.

To date our experiments have been done with analogue data
collected by the CAPS-ELS instrument at Saturn, but we do not
expect identical empirical results for data collected by PIMS at Eu-
ropa. For operational use, we would plan to collect PIMS data from
one or more initial flybys of Europa to enable an offline algorithm
evaluation customized to the boundary events encountered by the
Europa Clipper spacecraft. The same methodology employed in the

CAPS-ELS study can be used to identify the best-performing algo-
rithm on PIMS Europa data, in conjunction with our assessment of
the runtime cost and resource consumption.
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