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Abstract

In many application domains, it is useful to be able to rep-
resent and reason about a user’s preferences over sets of ob-
jects. We present a representation language, DD-PREF (for
Diversity and Depth PREFerences), for specifying the desired
diversity and depth of sets of objects where each object is rep-
resented as a vector of feature values. A strong diversity pref-
erence for a particular feature indicates that the user would
like the set to include objects whose values are evenly dis-
persed across the range of possible values for that feature. A
strong depth preference for a feature indicates that the user
is interested in specific target values or ranges. Diversity and
depth are complementary, but are not necessarily opposites.
We define an objective function that, when maximized, iden-
tifies the subset of objects that best satisfies a statement of
preferences in DD-PREF. Exhaustively searching the space
of all possible subsets is intractable for large problem spaces;
therefore, we also present an efficient greedy algorithm for
generating preferred object subsets. We demonstrate the ex-
pressive power of DD-PREF and the performance of our
greedy algorithm by encoding and applying qualitatively dif-
ferent preferences for multiple tasks on a blocks world data
set. Finally, we provide experimental results for a collection
of Mars rover images, demonstrating that we can success-
fully capture individual preferences of different users, and use
them to retrieve high-quality image subsets.

Introduction and Motivation
In many application domains, it is useful to be able to ex-
press preferences or utilities over sets of objects. Consider:

• a search engine user wants to see ten relevant yet diverse
documents;

• an autonomous Mars rover must select fifteen images to
download to scientists on Earth;

• a college wants to select a group of 100 incoming students
from the 1500 applications it received.

In all of these cases, the preferences among the possible
choices interact with each other. For example, the search
user does not want to see duplicate documents, despite the
fact that they will be ranked equally and therefore could both
appear in the top ten documents. The college wants to have
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highly ranked students who also comprise a diverse incom-
ing class. These examples show that the simple approach of
ranking the items and taking the top k as the selected sub-
set will not necessarily yield the optimal subset. To enable
the study of this phenomenon, we introduce two important,
sometimes competing, aspects of set preferences: the de-
sired diversity and depth of the selected subset. A strong
diversity preference for a particular feature indicates that the
user would like the set to include objects whose values are
evenly dispersed across the range of possible values for that
feature. A strong depth preference for a feature indicates
that the user is interested in specific target values or ranges.
While selecting the top k items from a ranked list can ad-
dress a depth preference, it cannot satisfy a diversity prefer-
ence, since diversity is inherently a set-based property.

Previous work on preference modeling for sets of objects
has focused on capturing interactions between propositional
objects. That is, the objects are not represented by any fea-
tures. While this framework is useful for resolving com-
binatorial auctions (e.g., Nisan, 2000; Boutilier, 2002), it
precludes the possibility of generalization to new sets. Pref-
erence modeling that does account for feature values has fo-
cused on ranking the individual items in a list, rather than se-
lecting the optimal subset of items (e.g., Crammer & Singer,
2001). This work seeks to address the gap between these
two areas by developing a method for modeling, applying
and, eventually, learning feature-based preferences over sets
of objects.

The primary contribution of this paper is DD-PREF (for
Diversity and Depth PREFerences), a language that allows
a user to specify the degree to which individual features
should be varied (diversity) or focused on particular values
(depth). We also present a simple greedy algorithm for com-
puting high-quality subsets. We evaluate the ability of DD-
PREF to encode meaningful preferences for (1) three sepa-
rate tasks in an artificial blocks world domain, where we ob-
serve that the optimal subset of k objects often differs from
the top k individually ranked objects, and (2) a Mars rover
image retrieval task, where we automatically infer and apply
preferences for multiple users.

Related Work and Discussion
Preference modeling has been widely studied in decision
theory, machine learning, and multi-agent systems. How-



ever, most of this work focuses only on preferences over in-
dividual objects, rather than sets (Crammer & Singer 2001);
or on preferences over sets of propositional objects, rather
than feature-based objects (Cramton, Shoham, & Steinberg
2005). CP-Nets (Boutilier et al. 2004), which capture pref-
erential independence and conditional independence rela-
tionships among object features in a graphical representa-
tion, have been applied to a number of different domains,
including web page configuration (Domshlak, Brafman, &
Shimony 2001). However, CP-Nets capture only interac-
tions among features, not among objects in a set.

Barberà, Bossert, & Pattanaik (2004) survey the literature
on ranking sets of objects. Most of this work focuses on
modeling preferences over opportunity sets, where the im-
portant issue is freedom of choice within mutually exclusive
alternatives. Barberà, Bossert, & Pattanaik use the term joint
alternatives for the problem in which we are interested (col-
lections of objects that may all be useful or relevant). Again,
research in this area focuses only on propositional domains.

Recommender systems have primarily focused on rating
individual objects, but several authors have identified the
portfolio effect—in which including highly similar objects
in a recommendation set may be undesirable—as an im-
portant issue. In a survey of hybrid recommender systems,
Burke briefly mentions the portfolio effect; the only sugges-
tion given is to avoid objects that the user has already seen.
Ali & van Stam (2004) indicate that the portfolio effect is a
major concern in the domain of TV show recommendations;
they mention a domain-specific set reduction technique (use
the next episode of a TV show to represent that series), and
suggest that one should avoid “imbalance” in a recommen-
dation set, but do not give specific methods for doing so.

More recently, Ziegler et al. performed an extensive user
study to examine the effects of a technique they call topic di-
versification on book recommendation (Ziegler et al. 2005).
They found that by balancing a recommendation list using
a user’s interests, although accuracy is reduced, user sat-
isfaction is increased. Their technique is domain-specific,
and treats objects as having only a single relevant attribute.
However, their findings reinforce our claim that modeling
the diversity of a set of objects can increase performance.

DD-PREF: Specifying Preferences over Sets
To address these limitations, we present the DD-PREF lan-
guage for capturing feature-based preferences over sets of
objects. We assume a scenario in which a user wishes to
select a subset S of k objects from U , the universe of n
objects, where each object is represented as a vector of m
feature values. DD-PREF supports two important preference
notions: diversity and depth. A diversity preference speci-
fies the desired amount of variability among objects in the
selected subset, and a depth preference specifies preferred
feature values.

We will use the term candidate subsets to refer to all
C(n, k) (n choose k) possible subsets of size k that can
be constructed from n objects; selected subset to refer to
the subset of k objects that is returned by an algorithm; and
optimal subset to refer to the best available subset (i.e., the

subset of size k that maximizes the DD-PREF objective func-
tion, as defined below). Each object xi is represented as a
feature vector, (x1

i , . . . , x
m
i ), where xf

i ∈ Vf , and Vf is the
domain of feature f . In this paper, we focus on real-valued
features, but the methods can be applied to integer-valued
and categorical (discrete) features as well.

In our language, a preference statement P is a collection
of individual feature-based preferences Pf , f = 1, . . . , m.
Each preference Pf is expressed as a tuple: < qf , df , wf >
indicates that we prefer subsets of objects that exhibit an
amount of diversity df ∈ [0, 1], subject to a “quality” func-
tion qf that maps feature values to their relative desirability,
with a weight of wf ∈ [0, 1]. The feature weight w indicates
a feature’s importance relative to other feature preferences.
For example, a Mars rover scientist might identify “percent
of image that is rock” as an important feature (wf = 1.0),
preferring sets containing images that are 50-80% rock (qf ),
with high diversity (df = 0.8). In this work, we examine
preferences explicitly specified by a user as well as prefer-
ences inferred from independent item rankings provided by
the user.

Depth. The quality functions qf specify the preferred
depth of the optimal subset; that is, which feature values
are most desirable in the selected objects. In the simplest
case, the quality function can simply be represented as a step
function, where values in a desired range [vmin, vmax] are
mapped to 1 and all other values are mapped to 0. This pre-
ferred range can also be interpreted as a soft constraint on
the feature values, by penalizing values outside the range to
varying degrees. Other examples of quality functions might
be a bimodal preference, indicating that very large and very
small values are preferred to medium values, or a mono-
tonic preference, indicating that larger values are preferred
to smaller ones.

Given the m quality functions in P , we define the depth
of an object x ∈ S as the weighted average quality of its
feature values:

object-depth(x,P) =
1∑
f wf

m∑

f=1

wfqf (xf ),

where xf is the value of the f -th feature for x. The depth of
a set S is the average depth of the objects in the set:

depth(S,P) =
1
|S|

∑

x∈S

object-depth(x,P).

The depth of a set will always be in the range [0, 1].
Note that this definition of depth does not model inter-

actions between objects or between features. Interactions
between different objects are modeled in DD-PREF by the
diversity preference, as explained next. In some domains,
a concept of depth that is sensitive to inter-feature depen-
dencies might be useful; for example, one might only be in-
terested in web pages that mention machine learning if they
also mention preference modeling. We plan to investigate
ways to model such interactions, perhaps by using modified
CP-Nets (Boutilier et al. 2004). CP-Nets capture prefer-
ential independence and conditional independence relation-
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Figure 1: Sets with different skew values.

ships among features in a graphical representation, but they
have not been applied to object sets.

Diversity. Diversity is a set-based property that captures
the degree to which values for a particular feature are
grouped close together (low diversity) or widely and evenly
dispersed across the range of values (high diversity). The
diversity measure that we define ranges from 0 to 1, where 0
corresponds to a preference for minimal diversity (all objects
have the same value for that feature) and 1 represents a max-
imal diversity preference (objects have values that are max-
imally distinct and spread evenly across the desired range).

We define diversity in terms of a complementary notion
we call skew.1 Skew quantifies the amount by which a set of
real values diverges from an even distribution of values over
the range. (Skew can also be defined for integer and cate-
gorical values, but we focus on real-valued features here.) A
low skew value means a very even distribution, correspond-
ing to high diversity; high skew corresponds to low diversity.

We calculate the skew σ(V ) of a list of k > 1 sorted val-
ues V =< vmin, . . . , vmax > as the normalized squared
loss function for a linear fit through vmin and vmax.
This loss function is normalized by the maximum possible
squared loss. Specifically,

σ(V ) =
∑k

i=1(vi − v′
i)

2

M(V )
,

where v′i, the ith value in an evenly distributed list of k val-
ues bounded by vmin and vmax, is computed by:

v′
i = vmin + (vmax − vmin)

i − 1
k − 1

,

and M(V ), the maximum squared loss for a list with the
same vmin, vmax, and length as V , is:

M(V ) =
k−1∑

i=1

(v′
i − vmin)2. (1)

The maximum squared loss occurs when there are only two
distinct values (vmin and vmax) in the list, and the values are
distributed in a maximally uneven fashion. Without loss of
generality, we let there be one value at vmax and the rest (k−
1 values) at vmin, yielding Equation 1. By this definition,
skew is undefined for a list composed of only one distinct
value; for completeness, we set σ(V ) = 0 in this case.

Figure 1 shows three different sets of 11 values, all with
the same minimum (0) and maximum (10) values. The lin-
ear fit through 0 and 10 is shown by a solid line. Figure 1(a)

1We use this term for its intuitive meaning of bias or uneven-
ness, not in the statistical sense of skewness.

BASIC-GREEDY(P , U , s, k, α)

1. Initialize candidate set S with seed object {s}.

2. For j from 2 to k:

(a) Select the object x ∈ (U − S) that maximizes
Fdd(S

⋃{x},P, α).

(b) Set S = S
⋃{x}.

3. Return S.

Figure 2: Pseudocode for greedy subset selection.

matches this distribution exactly, and has a skew of 0.0. Fig-
ure 1(b) has ten values at 0 and one value at 10, so it is
maximally divergent from the constrained linear fit and has
a skew of 1.0. Figure 1(c) has all nine intermediate values
set to 5; the resulting skew is 0.21.

Since low skew corresponds to high diversity and vice
versa, we define the diversity of feature f over a candidate
subset S = {x1, . . . , xk} as 1 minus the skew of that fea-
ture’s values in S:

divf (S) = 1 − σ(sort(< vf
i |i = 1, . . . , k >)).

The actual diversity of a set is then the weighted average of
the diversity values for each feature:

actual-div(S) =
1∑
f wf

m∑

f=1

wf divf (S).

To capture the degree to which a subset’s diversity matches
the desired diversity, df , we calculate the average squared
diversity error, weighted by the feature preferences:

div(S,P) =
1∑
f wf

m∑

f=1

wf (df − divf (S))2.

This measure of diversity will always be in the range [0, 1].
As with depth, because we measure the diversity of each

feature independently, DD-PREF cannot capture interactions
between features in the diversity measure. It is not clear that
such interactions arise in practice; in the domains we have
looked at, there are no obvious cases where inter-feature in-
teractions are important in modeling diversity. However, it
may be useful in the future to model such interactions.

Objective Function. We define an objective function
Fdd(S,P), α that assesses the value of a candidate subset
S, given a preference statement P . The objective function
includes a parameter α (referred to as the diversity weight),
which allows the user to emphasize the relative importance
of depth and diversity.

Fdd(S,P, α) = (1 − α) depth(S,P) + α div(S,P) (2)

Greedy Algorithm for Subset Selection
To evaluate the expressive power of DD-PREF, we imple-
mented a greedy algorithm for selecting a subset of k ob-
jects, given a preference statement P (see Figure 2). This
algorithm takes as input the preference P , the set of objects
U , the diversity weight α, and a “seed object” s ∈ U to serve



as the starting point for the selected subset. This is necessary
because diversity cannot be evaluated over a set with only
one member. The greedy algorithm repeatedly adds the best
object (according to the DD-PREF objective function) to the
subset until the set includes k objects.

We observe that the greedy algorithm gives close to op-
timal performance in practice. However, it can be sensi-
tive to the seed object that is selected. Recall that for sin-
gleton sets, the diversity function always returns 0, so only
the depth value matters in the objective function. We de-
fine and analyze three variants with different seed selection
mechanisms. The Basic-Greedy algorithm simply chooses a
seed item randomly from the equivalence set of items in U
with maximal depth (i.e., with maximal weighted quality).
The Wrapper-Greedy method (which we use in our exper-
iments) invokes the greedy algorithm n times, trying each
seed object in turn, and then selects the subset with the over-
all best value for the objective function. Finally, LA-Greedy
(Lookahead-Greedy) searches exhaustively over all subsets
of size 2 to find the optimal such subset, and then uses this
subset to initialize the greedy algorithm.2

We compare our approach to three baselines: exhaustive
search, random selection, and the Top-K algorithm, which
selects the top k blocks independently, according to the
depth function only.

Complexity analysis. The big-O complexity of each of
the six algorithms is given in the following table, and is
briefly justified in the following text. (Due to space lim-
itations, the mathematical details are omitted.) The com-
plexity of calculating the depth or diversity of a set of k ob-
jects is O(mk); therefore, the objective function Fdd is also
O(mk). We assume that n >> k.

Algorithm Complexity
Basic-Greedy O(mk2n)
Wrapper-Greedy O(mk2n2)
LA-Greedy O(mkn2)
Exhaustive O(mknk)
Top-K O(mk2n)
Random O(k)

Basic greedy search evaluates n subsets of size 1, n − 1
subsets of size 2, . . . , and (n−k+1) subsets of size k, so it is
O(

∑k
i=1 m (n− i + 1) (i)). Wrapper greedy search applies

greedy search for each of n seed objects. Lookahead greedy
search exhaustively searches all subsets of size 2 (which is
O(C(n, 2)mk) = O(n2mk)), then uses those as the first
two seed objects and grows the rest of the set greedily. For
large n, the n2 term in the lookahead dominates the k2 term
in greedy search.

Exhaustive search evaluates C(n, k) (n choose k) sub-
sets. C(n, k) is O(nk) for n >> k. Top-K search computes
depth only (O(mk)) for n objects and maintains a sorted
list of length k with O(k) comparisons at each step. Ran-
dom search generates k random selections.

2Although we mention LA-Greedy and give its complexity
analysis, we did not evaluate this algorithm in the experiments pre-
sented in the paper. We plan to explore this method and other vari-
ants more thoroughly in future work.

Experimental Results

Encoding Qualitatively Different Preferences

To illustrate how DD-PREF can be used to model prefer-
ences for different types of tasks, we developed a simple
blocks-world data set, which includes three different tasks
with very different preferences. We show the results of ap-
plying five different algorithms to generate preferred subsets
from a collection of blocks: (1) the Basic-Greedy algorithm,
(2) the Wrapper-Greedy algorithm, (3) the Top-K algorithm,
(4) random subset selection, and (5) exhaustive search.

Blocks world data. Objects in the synthetic blocks do-
main have four attributes: size (a real value from 0 to 100),
color (represented as integers from 0–6), number-sides (an
integer value from 3 to 20), and bin (representing sequential
locations in a storage area; an integer from 0 to 100). We
have developed sample preference statements for three dis-
tinctly different tasks. Although these tasks (and the specific
values associated with each task) are artificial, they are intu-
itively reflective of the types of real-world preferences one
might wish to model in such a domain. The quality func-
tions qf are step functions, specified by the minimum and
maximum desired values.

Task 1: Construct a mosaic. This task requires various
block sizes—but all fairly small; with varied colors; and
many different shapes. Location is less important, but the
blocks should be close together if possible. Thus, we have
the following feature preferences < qf , df , wf >:

Psize = < [0, 25], 0.8, 1.0 >
Pcolor = < [0, 6], 0.75, 0.8 >
Pnumber−sides = < [3, 20], 1.0, 0.6 >
Pbin = < [0, 100], 0.1, 0.6 >

Task 2: Build a uniform tower. Here we want large,
similar-size, similar-color blocks, all the same shape and
with few sides. The location doesn’t matter (i.e., wbin = 0).

Psize = < [50, 100], 0.1, 1.0 >
Pcolor = < [0, 6], 0.0, 1.0 >
Pnumber−sides = < [4, 8], 0.0, 1.0 >

Task 3: Select blocks for a child. The blocks for this task
must be medium-sized for grasping, in many different colors
and shapes, and located close together.

Psize = < [10, 100], 1.0, 1.0 >
Pcolor = < [0, 6], 1.0, 0.8 >
Pnumber−sides = < [3, 20], 1.0, 0.8 >
Pbin = < [0, 100], 0.2, 0.4 >

Methodology. The same n blocks were used with all al-
gorithms, all values of k, and all preferences in a given trial.
The diversity weight α is set to 0.5 for all trials. The first set
of experiments (Figure 3) applied exhaustive search to small
problems to measure the true optimal value of the objective
function; we used this baseline to assess the performance of
the other four algorithms. In these experiments, n was set
to 50, and k was set to 2, 3, and 4. Exhaustive search is
impractical for larger problems, so we also ran a set of ex-
periments using only the first four methods (Basic-Greedy,
Wrapper-Greedy, Top-K, and Random) on 200 blocks, with
k = 5, 8, 11, and 14 (Figure 4).
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(a) Task 1 (Mosaic) (b) Task 2 (Tower) (c) Task 3 (Child)

Figure 3: Blocksworld results on small data sets (n = 50, α = 0.5), averaged over 20 trials. Bars show +/- one standard
deviation.

5 8 11 14
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number selected (k)

O
bj

ec
tiv

e 
fu

nc
tio

n 
va

lu
e

Wrapper−Greedy
Basic−Greedy
Top−K
Random

5 8 11 14
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number selected (k)

O
bj

ec
tiv

e 
fu

nc
tio

n 
va

lu
e

Wrapper−Greedy
Basic−Greedy
Top−K
Random

5 8 11 14
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number selected (k)

O
bj

ec
tiv

e 
fu

nc
tio

n 
va

lu
e

Wrapper−Greedy
Basic−Greedy
Top−K
Random

(a) Task 1 (Mosaic) (b) Task 2 (Tower) (c) Task 3 (Child)

Figure 4: Blocksworld results on large data sets (n = 200, α = 0.5), averaged over 20 trials. Bars show +/- one standard
deviation.

Discussion. Figure 3 shows that the Wrapper-Greedy al-
gorithm performs very well, identifying subsets whose ob-
jective function values are close to the optimal value in all
cases tested. For two-block subsets, all of the algorithms but
Random perform equally well. This is because any pair of
instances will yield a diversity of 1.0. so the diversity match
is the same for all algorithms. (The Random algorithm per-
forms worse because it will sometimes select blocks that do
not satisfy the depth preference.) Note that this highlights
a potential weakness of our current definition of diversity,
which does not measure the degree to which a set of val-
ues actually covers the possible range of values. This latter
property can be termed coverage; we are currently investi-
gating ways to measure coverage, either by modifying the
definition of diversity, or by adding an additional term to the
objective function.

For k > 2, Wrapper-Greedy significantly outperforms
Top-K and Random in the 50-block experiments (Figure 3)
and in the larger 200-block experiments shown in Figure 4.

For Task 1 and Task 3, on the large data sets (Figures 4),
both the objective function value and the relative perfor-
mance of the algorithms stay fairly constant as k increases.
By contrast, on Task 2, the objective function value for all
of the algorithms decreases as k increases. This is because
Task 2 is highly constrained (size to [50, 100] and number-
sides to [4, 8]). As a result, very few blocks actually satisfy
the constraints, so the depth preference cannot be satisfied
for most of the blocks when k is large. In Task 2, there is

also a strong preference for blocks having the same color,
which is difficult to satisfy given the random generation of
the blocks.

As shown by the complexity analysis previously, the
greedy algorithm is far more computationally efficient than
exhaustive search. Since it yields near-optimal performance,
it is a good choice for larger problems. Wrapper-Greedy
consistently yields higher performance than Basic-Greedy,
but is is computationally more expensive (by a factor of n).
Also, for large k, the difference between Wrapper-Greedy
and Basic-Greedy is generally less than the difference be-
tween Basic-Greedy and Top-K. In Tasks 1 and 3, the differ-
ence between Wrapper-Greedy and Basic-Greedy is barely
noticeable. Therefore, in some domains, the Basic-Greedy
algorithm may be preferred to Wrapper-Greedy. Hybrid
methods such as Lookahead-Greedy can provide a compro-
mise between these two algorithms, but were not studied in
these experiments.

The Impact of Preference Specification. Next, we inves-
tigated the importance of being able to specify different pref-
erences. Given that Wrapper-Greedy identifies good subsets
for each task, are these subsets similar to each other or quite
distinct? If we find that approximately the same subset is se-
lected when using different preferences, then specifying the
preferences may not be very important.

Table 1 shows the objective function values obtained
when generating the best block subset (k = 14, n = 200) ac-
cording to one preference statement but evaluating it against



Generating Evaluating Preference
Preference Task 1 Task 2 Task 3

(mosaic) (tower) (child)

Task 1 0.9827 ± 0.0054 0.3054 ± 0.0306 0.9249 ± 0.0302
Task 2 0.7128 ± 0.0073 0.8654 ± 0.0175 0.6811 ± 0.0156
Task 3 0.8761 ± 0.0224 0.2646 ± 0.0212 0.9994 ± 0.0007
Random 0.7813 ± 0.0166 0.4051 ± 0.0382 0.8542 ± 0.0267

Table 1: Preference comparison across blocks world tasks, averaged over 20 trials (k = 14, n = 200, α = 0.5). Rows represent
different selected subsets; columns represent different preference evaluations.

other preferences. The first three rows represent the subsets
obtained when running Wrapper-Greedy with preferences
for Task 1 (mosaic), Task 2 (tower), and Task 3 (child). The
fourth row represents the subsets obtained by random selec-
tion. The columns give the average objective function for
the selected subsets, over 20 trials, when evaluated against
each of the three preferences. The best value for each col-
umn appears in boldface.

We find that the diagonal entries, where the generating
and evaluating preferences are identical, have the highest ob-
jective function values. This demonstrates that the Wrapper-
Greedy algorithm is doing a good job of tailoring the se-
lected subset to the specified preferences. In addition, the
preferences have significant impact: the subsets generated
according to other preferences do a poor job of satisfying
the evaluating preference. Further, we find that the block
subsets for one task, when measured by the other task prefer-
ences, are often worse than a randomly selected set of blocks
would be. For example, the subsets generated for Task 1,
when evaluated in the context of Task 2’s preference, yield
a worse objective function value (0.3054 on average) than
a randomly selected block subset (0.4051 on average). The
diagonal entries also have the smallest standard deviations—
that is, subsets selected for a given task have lower variabil-
ity with respect to that task’s preferences than do other sub-
sets. We conclude that preference specification can have a
large impact on the results, and specifying the right set of
preferences is critical.

Applying Preferences to Retrieve Larger Sets

The ability to encode and apply set-based preferences is par-
ticularly useful for large retrieval scenarios. For example,
a user may be willing to indicate preferences over a small
number of objects in exchange for getting back the top frac-
tion of objects from a much larger data set. We tested this
hypothesis by encoding user preferences for Mars rover im-
ages in DD-PREF and then applying them to retrieve a match-
ing subset from a larger group of images. We also explored
the impact of different values for the diversity weight, α.

We obtained a set of 100 grayscale images taken by a
Mars field test rover, on Earth. Each image is represented by
six features: the percent of the image composed of sky, rock,
rock layers, dark soil, light soil, and shadow. Figure 5(a)
shows one of the images and its feature values. For evalu-
ation purposes, each user identified, without examining the
image features, the best subset of 20 images, Stop20.

Inferring Preferences. First, we identified each user’s top
five ranked images, Stop5, from a separate task in which the
same users were asked to fully rank 25 randomly selected
images from the same set of 100 (Castaño et al. 2005). Our
goal was to see if preferences inferred from Stop5 could be
used to identify a subset similar to Stop20. We set the de-
sired diversity df to the diversity of Stop5. The quality func-
tion qf was defined as a soft constraint over the range of
values in Stop5 for feature f . Specifically, qf (xf

i ) = 1 if
xf

i ∈ [vf
min, vf

max] and (1−min(|vf
min−xf

i |, |xf
i −vf

max|)2)
otherwise. We set wf = 1.0 for all features. For example,
User 1’s preferences were:

Psky = < [33, 50], 0.94, 1.00 >
Prock = < [2, 16], 0.92, 1.00 >
Players = < [0, 2], 0.81, 1.00 >
Plightsoil = < [1, 6], 0.97, 1.00 >
Pdarksoil = < [35, 47], 0.99, 1.00 >
Pshadow = < [0, 1], 0.94, 1.00 >

In contrast, User 2 preferred images with less sky, more
rocks, and more light soil.

Methodology. For these experiments, we used the inferred
preference statements and the Wrapper-Greedy method to
select a subset of k = 20 items from the full data set of
n = 100 items. We evaluated the selected subsets in terms
of their overlap with the Stop20, varying alpha from 0 to 1 in
increments of 0.1. The overlap expected by random chance
is four images.

Discussion. Figures 5(b,c) show that Wrapper-Greedy
performed significantly better than random chance for each
user, despite their different preferences. The best result for
User 1 was obtained with a high diversity weight (α = 0.9).
Note that this result is better than a focus purely on depth
(α = 0.0, equivalent to a Top-K approach) or diversity
(α = 1.0). In contrast, the best result for User 2 was ob-
tained with a focus purely on depth.

We observe that although the mean overlap for each user’s
best results never exceeds 8 (of a possible 20), the objective
function values for these subsets are very high (0.999 in all
cases). We found that the true Stop20 was actually valued
lower (0.995 for User 1 and 0.994 for User 2), which sug-
gests that (a) the users may not have been consistent in their
selection of Stop5 and Stop20, and/or (b) the features cannot
adequately capture what the users value in the images. For
example, User 1’s preferences specify a range of 33-50%
for the sky feature, but in this user’s Stop20, the sky feature
ranges from 1-54%. Similarly, the desired (based on Stop5)
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Figure 5: Rover image results (n = 100, k = 20), averaged over 20 trials; bars show +/- one standard deviation.

and actual (based on Stop20) diversity values differ greatly
for some features. Other methods for eliciting preferences,
and a richer feature set, will likely improve performance.

These experiments demonstrate that DD-PREF can
successfully—albeit not perfectly—encode user-specific
preferences over subsets. One remaining challenge is the
issue of how to combine multiple users’ preferences, when
they must agree on a single subset (such as when a Mars
rover must select images that satisfy multiple scientists’
preferences).

Conclusions and Future Work

We presented the DD-PREF language for representing prefer-
ences over sets of objects, and introduced two key support-
ing concepts: diversity and depth. We showed that DD-PREF
can be used to encode qualitatively different preferences in
two domains, and presented an efficient and effective greedy
algorithm for generating preferred subsets.

We identified a simple way to infer preferences from
ranked image data. More generally, we are interested in de-
veloping automated algorithms to learn DD-PREF preference
statements from ranked objects and object sets, including
negative (non-preferred) training data.

We also plan to explore several extensions to DD-PREF,
including the use of CP-Nets (Boutilier et al. 2004) to
represent interactions between features for depth and diver-
sity preferences, ways to capture inter-object interactions for
depth preferences, and additional kinds of inter-object in-
teractions, such as coverage, complementarity, and substi-
tutability.
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Seidl, C., eds., Handbook of Utility Theory, volume 2: Ex-
tensions. Springer. Chapter 17.
Boutilier, C.; Brafman, R. I.; Domshlak, C.; Hoos, H.; and
Poole, D. 2004. CP-Nets: A tool for representing and
reasoning with conditional ceteris paribus preference state-
ments. Journal of AI Research 21:135–191.
Boutilier, C. 2002. Solving concisely expressed combina-
torial auction problems. In Proceedings of the Eighteenth
National Conference on Artificial Intelligence, 359–366.
Burke, R. 2002. Hybrid recommender systems: Survey and
experiments. User Modeling and User-Adapted Interaction
12(4):331–370.
Castaño, R.; Wagstaff, K.; Song, L.; and Anderson, R. C.
2005. Validating rover image prioritizations. The Inter-
planetary Network Progress Report 42(160).
Crammer, K., and Singer, Y. 2001. Pranking with rank-
ing. In Proceedings of the Neural Information Processing
Systems Conference, 641–647.
Cramton, P.; Shoham, Y.; and Steinberg, R., eds. 2005.
Combinatorial Auctions. MIT Press.
Domshlak, C.; Brafman, R. I.; and Shimony, S. E. 2001.
Preference-based configuration of web page content. In
Proceedings of the Seventeenth International Joint Confer-
ence on Artificial Intelligence, 1451–1456.
Nisan, N. 2000. Bidding and allocation in combinatorial
auctions. In Proceedings of the 2nd ACM Conference on
Electronic Commerce, 1–12.
Ziegler, C.-N.; McNee, S. M.; Konstan, J. A.; and Lausen,
G. 2005. Improving recommendation lists through topic
diversification. In Proceedings of the 15th International
World Wide Web Conference. In press.


