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Abstract

To date, most small bodies exploration has involved
short timescale flybys that execute pre-scripted data col-
lection sequences. Light time delay means that the space-
craft must operate completely autonomously without di-
rect control from the ground. But in most cases the phys-
ical properties and morphologies of prospective targets
are unknown before the flyby. Features of interest are
highly localized, and successful observations are highly
dependent on geometry and illumination constraints. Un-
der these circumstances onboard computer vision can im-
prove science yield by responding immediately to col-
lected imagery, for example by targeting features of op-
portunity for additional data collection by specialized in-
struments with a narrow field of view. Among the most
challenging targets are those involving specific terrain
morphology or differences in surface brightness. Differ-
ential illumination and shadowing makes such features ex-
tremely difficult to find reliably. Consequently they are a
difficult worst-case test for autonomous image analysis.
This work presents a framework for the detection and lo-
calization of such targets, focusing on the specific problem
of high albedo surface features. We evaluate performance
using a case study with archival datasets from previous
primitive bodies encounters.

1 Introduction

Small bodies - the asteroids, comets, and other primi-
tive objects in the solar system - are highly valuable targets
for scientific exploration. These objects have undergone
little modification since their formation, so they uniquely
reveal the processes that shaped our Solar system in the
early nebula and as a consequence of large-scale dynami-
cal events. They tell us about our own solar system’s his-
tory, and inform our interpretation of exoplanet systems
and their potential for life. Those objects that we have
visited exhibit striking diversity, suggesting that we have
only just begun to characterize their populations. Some
of these primitive bodies (Near Earth Objects, Phobos and

Deimos) have also been identified as possible targets for
the extension of Humanity in space and are the focus of
reconnaissance missions. All this has given them a high
priority in future mission plans by NASA, ESA, and other
space agencies.

These targets have difficulties commensurate with
their great value. Many lie in remote and challenging
orbits that can only be reached by expensive high delta-
V maneuvers. Consequently, most encounters of small
bodies have to date been flybys that provide just a few
minutes or hours to collect data during closest approach.
A few rare extended encounters, such as the Dawn en-
counters at Vesta and Ceres and the Rosetta mission at
67P/ChuryumovGerasimenko, allow multiple command
cycles and opportunities for repeat imaging. But for the
most part primitive bodies data collection has occurred
autonomously, with light time delays of hours and no di-
rect supervision from the ground. The quality and quan-
tity of information obtained from these pre-scripted flyby
sequences so far has been limited. As added difficulty,
features of scientific significance to be sought at these ob-
jects are faint as their true nature is concealed by space
weathering and regolith processes. This makes it difficult
to capture the diversity of these bodies in the course of
flybys. Nevertheless, flybys provide a low-cost means to
characterize many bodies in a single mission and there-
fore develop a critical population-level understanding of
these objects. They figure prominently in many proposed
missions such as a Trojan Tour and Rendezvous (TTR) [1]
and Main Belt Asteroid Flyby missions [6].

This paper discusses ways that autonomy and onboard
intelligence can benefit flyby science. Specifically we
demonstrate autonomous onboard data analysis and re-
sponse to help close the gap in science value of flybys
vis a vis extended encounters. Missions can command the
spacecraft to adapt targeting decisions in real time, mi-
grating rudimentary decisions across the light time gap for
more responsive data collection.

Many of these capabilities can be formulated as com-
puter vision tasks. For example, a primary consideration
is detection and tracking of the small body itself. This can



Figure 1. Preprocessing pipeline for training a classifier for surface feature detection. A: Comet
103P/Hartley on a detail of image mv10110413-5004046 taken by the framing camera of the Deep
Impact probe during the EPOXI mission. B: Renormalized difference of grayscale and median filtered
image. C: Set of possible surface features as a result of weighted mean shift clustering (red crosses) and
ground truth labels from a domain expert (green circles). D: Patches of labeled surface features from
9P/Tempel. E: Locally normalized patches, constituting the positive class for training a random forest
classifier.

be achieved either by use of a center-of-brightness algo-
rithm [17], by taking connected components into account
[19]. Similar strategies were used in the flyby encounters
of Deep Space 1 at Borrelly and the Stardust flyby of An-
nefrank [4]. Plumes or outgassing are also of interest, and
a spacecraft that finds them could target them for followup
measurements [27]. Plumes have been observed at Jovian
and Saturnian moons, and outgassing is also expected at
cometary bodies, activated asteroids, and water-rich as-
teroids [23]. Outgassing is a transient and somewhat un-
predictable event and can be faint for main belt asteroids
[13]. In addition to offering a compelling science target
of opportunity, it is also important that surface feature de-
tectors are invariant against such large-scale changes in
brightness. These challenges are aggravated in multinary
asteroid systems which occur frequently [16]. One can
prevent plumes from confusing subsequent image anal-
ysis by intentionally making the later analyses robust to
diffuse plumes [26] or by applying automated plume de-
tection as a filter [7, 15, 28]. A third class of targets is
made up of spectral outliers indicating distinctive compo-
sition. Recent tests have demonstrated autonomous detec-
tion of such targets using the Hyperion imaging spectrom-
eter aboard EO-1 [25].

While there has been considerable prior work on au-
tonomy in these areas, there are still compelling phenom-
ena for which no detection methodology currently exists.
Among the most challenging are those involving specific
terrain morphology or differences in surface brightness.
These are scientifically valuable because they can indicate
fresh unweathered material with diagnostic mineralogical
signatures. On comets, they can point to areas with high
concentrations of volatiles. Differential illumination and
shadowing makes such features extremely difficult to find

reliably. Consequently they are a difficult worst-case test
for autonomous image analysis. This work will focus in
depth on this challenge, demonstrating a method for de-
tection of high albedo surface features. A series of ex-
periments on archival flyby sequences demonstrates tech-
niques that can reliably achieve this objective. Section
2 describes in detail the proposed surface feature detec-
tion framework and Section 3 discusses the results from
a performance evaluation on flyby imagery from comets
Hartley 2 and Tempel 1.

2 Methods

We formulate the surface feature detection task as a
classification problem as summarized in Figure 1. Our ap-
proach is based on simple image filtering operations and
statistical classification. This exploits the strength of sta-
tistical object recognition while permitting very fast exe-
cution times.

2.1 Preprocessing
The aim of preprocessing is to mitigate illumination

variations and emphasize high albedo surface features. To
this end we apply a cross median filter on the current
frame and subtract the result from the original gray-scale
image. After renormalizing the difference image high-
lights high albedo regions independent from local image
exposure. As a result, surface features in dark areas and
well lit areas give similar responses. In addition, median
filters have the desired properties of linear run-time [18]
and edge preservation hence suppressing the bright edges
at the borders of small bodies. Figure 1B shows the renor-
malized difference image for a frame from Hartley 2 de-
picted in 1A. High albedo features are clearly discernible



in the illuminated part of the comet as well as in shadow.

2.2 Candidate Detection
The next step is the actual detection and localization

of surface feature candidates. We use intensity weighted
mean shift clustering [8] on the difference image for
mode detection. Specifically we use a circular box kernel
weighted by the greyscale intensity of the pixels in the dif-
ference images. Due to the discrete nature of raster images
this step can result in multiple adjacent detections. These
clusters are reduced to single locations by running mean
shift again but this time on the binary image of detections
from the first round. The resulting detections represent
the locations of candidate surface features. While this de-
tection procedure covers nearly all true positive samples
it yields a large number of false positive detection, which
have to be filtered out by a classification algorithms. Fig-
ure 1C shows a large number of surface feature candidates
depicted as red crosses on a frame from Hartley 2. The
ground truth annotations from a domain expert are shown
as green circles.

2.3 Training Procedure
In order to train a machine learning algorithm to dif-

ferentiate between true detections and false positives we
need a set of positive and negative examples. To this end
a planetary scientist annotated all frames from close en-
counters to the comets Hartley 2 and Tempel 1 by labeling
surface features of interest. Figure 2 presents a sequence
of 12 frames from Hartley 2 including the expert’s anno-
tations shown as red circles. Detected candidates within
a predefined distance of 10 pixel to ground truth annota-
tions are labeled as positive while the other detections are
labeled as negative. This set of positive and negative train-
ing samples can then be used to learn and validate a classi-
fier. Figure 1D depicts image patches of positive examples
from comet Hartley 2. We also force the classifier to be
rotation invariant by augmenting the training set with ro-
tated and flipped copies of patches from the positive class
[12].

2.4 Classification
The training set as described in the previous section

can be used in a machine learning framework to construct
a classifier which is able to discern true surface features
from false detections. First we extract images patches
of size 11 × 11 pixels at the locations of surface features
candidate detections from the original greyscale frames as
shown in Figure 1D. To achieve robust results each patch
is normalized by shifting and scaling the intensity values
to the range of [0, 1] (cf. 1E).

The image patches are described by a set of numeri-
cal attributes which are subsequently used for classifica-
tion. These attributes comprise the raw intensity values,

Figure 3. Left: Detail of a surface feature
of interest on comet 9P/Tempel. Right:
Enlarged image patch of a surface fea-
ture candidate. Overlayed is the grid
used for spatial binning of intensity val-
ues during attribute extraction.

general image statistics like mean, median and standard
deviation as well as the local gray value and gradient his-
tograms. To this end the patches are partitioned spatially
as shown in Figure 3 and then the greyscale intensities are
histogrammed per bin and for the whole patch. Finally,
an attribute vector is constructed containing the raw pixel
intensities, the image statistics and the local and global
histograms.

Based on the extracted attributes we train a random
forest classifier [2, 5] to differentiate actual surface fea-
tures from false positive candidates. In recent years ran-
dom forests or decision forests have been extended for
clustering [5], online learning [20], interactive learning
[10] and density estimation [9] to mention just a few. The
applications range from medical imaging [12, 11] over
gaming [22] to space exploration [24]. Random forests
have a number of properties which make them a suit-
able choice for autonomous computer vision during flyby
missions: (i) They can infer non-linear interactions be-
tween attributes and hence are able to construct the com-
plex model necessary for high accuracy in computer vi-
sion. (ii) Random forests implicitly perform attribute se-
lection and thus can deal with a large number of attributes
while being robust against noisy or non-informative vari-
ables. (iii) The ensemble structure favors parallel training
of the decision trees in a distributed manner which allows
handling of large amounts of training data in a reason-
able time frame. When the proposed system is used in
several missions the amount of image data demands the
use of parallel distributed learning. (iv) Random forests
can not only be learned but also tested in parallel which
results in fast execution speed. Besides GPU implemen-
tations [21], FPGA implementations are already available
for space exploration [3] and hence make random forests
an ideal choice for onboard computer vision.



Figure 2. Sequence of 12 frames of the closest encounter of deep impact with comet 9P/Tempel. The
annotations of the planetary scientist are shown as red circles and represent the surface features of
interest. The aim of our system is to detect these features autonomously and reliably with a low false
positive rate.

Specifically we train a random forest with 100 trees
by bootstrapping the training data for every tree and opti-
mizing over 10 randomly chosen attributes an their thresh-
old at every split node. The trees are grown until comple-
tion without pruning and the final prediction is achieved
my taking the majority vote of over all trees in the ensem-
ble. The ratio of trees voting for a true surface features
versus the ones voting for a false positive can be inter-
preted as the confidence of the classifier in its overall pre-
diction. We use this confidence estimate to generate the
precision/recall plots shown in Section 3 for estimating
the generalization power of the classifier.

3 Results & Discussion

3.1 Training and Testing Data
The proposed framework is evaluated by conducting

cross-validation experiments on public archival data of
small bodies. Sequences of navcam images were acquired
at regular intervals during the encounters [14]. A domain
expert labeled all surface features of interest as described
in Section 2.3. In total this amounts to 47 frames from
the encounter of deep impact with 103P/Hartley and 72
frames from 9P/Tempel.

3.2 Evaluation Procedure
The textbook evaluation procedure for such scenarios

in machine learning would be to perform cross-validation
on sample level, i.e. training on a subset of surface fea-
tures from all images and testing on the hold-out set. In
our setting this approach leads to nearly perfect classifi-
cation accuracy and hence vastly overstates the predictive
power of such a model. This is mainly due to the fact,
that the samples (surface feature candidates) are not i.i.d.
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0Figure 4. Precision and recall curves

based on varying classifier confi-
dence. Left: Training performance on
103P/Hartley. Right: Test performance
on 9P/Tempel using the model trained
on 103P/Hartley.

but highly correlated. Specifically surface features on one
small body look very much alike but can be dramatically
different from other small bodies. Similarly, performing
cross-validation per frame or using the out-off-bag (OOB)
error estimate from the random forest classifier [5] leads
to excellent performance, overestimating the power of the
model to generalize to a new target body.

To overcome this problem we resorted to a very strict
validation scheme by doing leave-one-out cross-validation
(LOOCV) on a per body level. In particular we train on all
samples from one comet and test the performance on the
samples of a complete different, unseen body. This pro-
cedure also resembles more closely the scenario we are
going to encounter on board in actual flyby missions. We
can train a model on all previously seen and labeled as-
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Figure 5. Precision and recall curves
based on varying classifier confi-
dence. Left: Training performance on
9P/Tempel. Right: Test performance
on 103P/Hartley using the model
trained on 9P/Tempel.

teroids and comets but we will not have any knowledge
about a small body which we never encounter before. For
missions with multiple encounters to the same object one
could envision updating the classification model with data
from previous flybys. This approach would significantly
boost classification accuracy, but is not the focus of this
work.

3.3 Performance Metrics
Overall detection performance of whole flyby se-

quences is reported in terms of precision and recall as de-
picted in Figures 4 and 5. The model is trained on all
samples from either Hartley 2 or Tempel 1 and then the
training error is calculated on the same data while the test
error is estimated on the samples from the unseen small
body. We vary the threshold on the confidence estimate
of the classifier as described in Section 2.4 to generate
precision/recall plots as shown Figures 4-5. Precision is
the fraction of detected samples that are true surface fea-
tures labeled by a planetary scientist, while recall is the
fraction of true surface features that are detected. Specif-
ically precision is defined as T P/(T P + FP) and recall as
T P/(T P + FN), T P referring to true positive detections,
FP to false positive and FN to false negative detection.

3.4 Discussion
The performance on the training set presented in Fig-

ures 4 (left) and 5 (left) demonstrate that the numerical
attributes are expressive enough to accurately model sur-
face features and to train a classifier to differentiate true
features from false positive. This is contrasted by a rather
poor performance on the test set of samples from pre-
viously unseen objects shown in Figures 4 (right) and 5
(right).

In practice we are interested in the high precision
regime of the performance curve. During a flyby mission

the proposed framework can be used to point a specialised
instrument with a narrow field of view at a surface feature
of interest. In flyby scenarios the autonomous system will
only have time to point once at an interesting feature, mak-
ing it of lower priority to have a classifier with high recall
which would cover all viable features. In that respect the
generalization from Tempel 1 to Hartley 2 as shown in
Figure 5 (right) would be completely feasible since the
spacecraft would target just the features in which the clas-
sifier has the highest confidence. The application of the
Hartley 2 model in a flyby at Temple 1 on the other hand
would likely fail since we have approximately 50% false
positive surface features in the high precision regime as
illustrated in Figure 4 (right). In this light, the classifier
strategy seems most appropriate for encounters involving
targets that are well-characterized (i.e. for which repre-
sentative examples exist) or for which at least one prior
flyby has been performed.

The major reason the model generalizes better from
Hartley 2 to Tempel 1 than the other way around is most
likely the fact that Hartley 2 has significantly more surface
features to learn from than Tempel 1. Hence the Hart-
ley 2 model encompasses a wider range of appearances
of surface features and can also better discriminate them
from the large set of false positive detections. This re-
sult demonstrates the need to train such models from the
largest variety of comets and asteroid available to guaran-
tee the best generalization performance possible for future
flyby missions.

4 Conclusion

To the best of our knowledge this is the first demon-
stration that autonomous surface feature detection is fea-
sible. We described a framework for candidate detection
and classification based on median filtering, mean shift
clustering and random forest classification. The accuracy
of the system was tested in cross validation experiments
on data from comets 103P/Hartley and 9P/Tempel which
emphasized the need for more and diverse training data
to learn robust models with good generalization perfor-
mance. Future flyby missions to comets and asteroids
could benefit from such a framework by allowing precise
pointing of narrow field of view instruments like spec-
trometers and hence significantly increase science return.
This same capability is also useful for extended or multi-
ple flyby encounters, where it can precisely target specific
features of interest despite positional uncertainty of both
spacecraft and target. This can greatly expand the palette
of spacecraft commanding options available to the opera-
tions team. Future missions visiting more distant targets
will introduce increasing light time gaps as well as high
encounter speeds resulting in only a few frames for deci-
sion making. In this light, autonomous onboard computer



vision will become increasingly important for our under-
standing of the composition and history of the outer solar
system.
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