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Introduction:  Rover missions like the Mars Sci-

ence Laboratory (MSL) operate through a system of 
tactical planning: the rover is commanded to make 
observations on the surface of Mars and sends the 
science data back to Earth, the science team analyzes 
the latest data and decides what observations to make 
on the next sol based on that data, and the process 
repeats. There is limited time available for science 
planning: <12 hours for MSL and potentially as few 
as 5 hours for the upcoming Mars 2020 rover. Thus, 
there is a need for systems that can rapidly and intel-
ligently extract information of interest from science 
instrument data to focus on potential discoveries and 
avoid missed science opportunities. Science planning 
and data analysis teams could benefit by spending 
their limited available time on the most promising, or 
novel, observations. The goal of novelty detection 
(also referred to as anomaly or outlier detection) 
techniques is to identify patterns in data that have not 
been previously or frequently observed [1,2]. We 
evaluated multiple methods for detecting novel geol-
ogy in multispectral images acquired by MSL.  

Mastcam Multispectral Images:  One instrument 
the MSL rover uses to make geologic observations is 
the mast camera, or “Mastcam,” a pair of CCD im-
agers mounted on the rover’s mast ~2 meters above 
the surface [3-5]. Each of Mastcam’s cameras, or 
“eyes,” has an eight-position filter wheel enabling 
images to be acquired in “true color” (Bayer pattern 
broadband red, green, and blue) and with six narrow-
band spectral filters spanning ∼400-1100 nm (visible 
to short-wave near-infrared) [3]. A similar camera, 
Mastcam-Z, will be onboard the Mars 2020 rover [6]. 
Examples of novel geology in Mastcam images in-
clude iron meteorites [7-8] and broken rocks that ex-
pose mineralogy under the dusty surface (e.g., Fig. 1). 

We created a dataset using 477 multispectral 
thumbnails (smaller, immediately-downlinked ver-
sions of full-resolution images) acquired between 
MSL sols 1-1666 using the right eye (M-100). From 
these, we identified 156 images with novel geology 
and cropped 237 64x64x6-pixel sub-frames around 
the novel regions (e.g., Fig. 1). We considered all 
other images typical and divided them into training, 
validation, and test sets. We augmented these datasets 
by sub-sampling 64x64x6-pixel sub-frames with a 

sliding window (9,302 train, 1,386 validation, and 
1,302 test sub-frames). We used the combined 237 
novel and 1,302 typical test images for testing the 
novelty detection methods. 

Methods: We evaluated two traditional methods 
for novelty detection: Reed-Xiaoli (RX) detectors [9] 
and singular value decomposition (SVD) [10]. We 
chose these methods because they are well established 
and enable visualization of detections within images. 
We also evaluated two recent deep learning methods: 
convolutional autoencoders (CAE) [11] and genera-
tive adversarial networks (GANs) [12]. Compared to 
traditional methods, these methods often exhibit bet-
ter performance for high-dimensional image datasets. 

RX Detector: The RX method is commonly used 
to detect anomalous pixels in multispectral or hyper-
spectral images. RX assigns an anomaly score to each 
pixel that is the Mahalanobis distance between the 
pixel and a background distribution [9]. The back-
ground distribution is usually defined as all other pix-
els or a window of pixels in the image. We instead 
computed the RX score for each pixel with respect to 
the background of the entire typical training dataset.  

SVD: SVD is a method of computing the principal 
components of a dataset. The principal components 
are the eigenvectors of the data matrix [1], and the 
reconstruction error of an input can be interpreted as a 
novelty score [10]. We used the first 100 principal 
components for modeling the typical training dataset.  

CAE: An autoencoder is a type of neural network 
that learns the salient features in a dataset. A convolu-
tional autoencoder (CAE) consists of an encoder net-
work to map (compress) inputs to a low-dimensional 
encoding and a decoder network to reconstruct inputs 
from the encoding using convolutional layers [11]. In 

Figure 1 Examples of novel geology in Mastcam images. 
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training, the loss between input and reconstruction is 
minimized. Loss is usually defined to be the mean 
squared error (MSE). We used this approach in [13] 
and found that MSE loss resulted in noisy reconstruc-
tions that lead to higher residuals for non-novel re-
gions and thus false positives. To improve the quality 
of autoencoder reconstructions, we propose to maxim-
ize the structural similarity index (SSIM) while min-
imizing MSE during training. SSIM is a measure of 
perceived similarity proposed by Wang et al. (2010) 
[14] for evaluating image compression algorithms 
(e.g., JPEG). We trained a CAE with the same archi-
tecture as in [13] using this hybrid loss function and 
Euclidean distance between inputs and reconstruc-
tions as the novelty score for test examples.  

GAN: GANs are a type of neural network that 
learn data-generating distributions for a dataset via 
minimax optimization of two networks. The genera-
tor samples from a d-dimensional normal distribution 
(d is size of latent vector) and tries to reconstruct an 
image resembling training images. The discriminator 
tries to distinguish training images from generated 
images. The discriminator minimizes its loss while 
the generator maximizes discriminator loss. As in 
[12], we used a bi-directional GAN (BiGAN [15]) to 
simultaneously train a third encoder network, which 
maps training images to d-dimensional encodings. We 
trained a BiGAN on the typical dataset and computed 
novelty scores as a weighted sum of the discriminator 
loss and reconstruction error as in [12].  

Experimental Results: We evaluated each novel-
ty detection method on the combined novel and typi-
cal test dataset. We computed the AUC (area under 
the curve) of the Receiver Operating Characteristic 
(ROC) curve and precision at N (P@N) [16] to com-
pare performance. P@N is the fraction of images 
from the novel dataset included in the top N selections 
by novelty score. To assess model performance on 
different types of novel geology in Mastcam images, 
we divided the novel dataset into 8 sub-classes: mete-
orite, bedrock, broken rock, float rock, vein, dust re-
moval tool (DRT) spot, drill hole, and dump pile. Fig. 
2 shows ROC AUC scores for the novel dataset over-
all and individual sub-classes. Table 1 gives P@N.  

We found the CAE had the best P@N perfor-
mance and the methods had comparable AUC score 
performance overall. However, we found significant 
differences for different types of novel geology. We 
found that SVD had the best performance in the bed-
rock, broken rock, float, and meteorite classes and 
was closely followed by the CAE. Because SVD and 
CAE minimize reconstruction error during training, 
they may learn mappings that reconstruct most inputs 
reasonably well even if the image contains unseen 

features like drill holes, DRT spots, and dump piles. 
The GAN had the best performance in the drill hole, 
DRT, and dump pile classes. This may be because the 
GAN discriminator learns to detect features common 
in typical images during training, which might not be 
recognized in the drill hole, DRT spot, and dump pile 
classes. RX had the worst performance overall by 
both measures; inspecting false positives suggests RX 
is sensitive to color discontinuities caused by JPEG 
artifacts, which is problematic for thumbnail images.  

Our experiments suggest multiple methods may be 
needed to detect the diverse novel geology observed 
by Mastcam along MSL’s traverse. In future work, we 
will perform additional experiments to constrain the 
performance of these and other novelty detection 
methods for Mastcam multispectral images. Addition-
ally, we are exploring ways to incorporate these 
methods into operations for MSL as well as the search 
capabilities of the Planetary Data System (PDS).  

 

 

 
Table 1 Precision at N (fraction of novel images in top N selections). 

Method N=15 N=50 N=200 
RX 0.27 0.14 0.11 

SVD 0.60 0.38 0.36 

CAE 0.87 0.52 0.32 

GAN 0.20 0.38 0.33 
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Figure 2 ROC AUC scores for typical test dataset and novel dataset. 
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