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Introduction: The Planetary Data System (PDS)
Imaging Node hosts millions of images acquired from
the planet Mars. Missions such as the Mars Science Lab-
oratory (MSL) and Mars Reconnaissance Orbiter (MRO)
are actively collecting new images to enrich our under-
standing of Mars. These new images are delivered to the
PDS Imaging Node periodically. All of these images are
served for public access by the PDS Image Atlas (Atlas).

With the constantly growing image volume, connect-
ing scientists, engineers, and the general public to images
of interest has become a challenge. Images delivered to
the PDS ImagingNode are required to containmetadata in
PDS standards. The metadata contains descriptive infor-
mation regarding when and how the images are processed
and transferred to the Earth. However, users of the Atlas
are often interested in finding images based on content,
and the content-based information is not included in the
metadata, andmust be extracted through content analysis.

To enable content analysis for efficiently finding im-
ages of interest, we proposed a solution that uses a deep
convolutional neural network (CNN) [1]. Deep CNN
classifiers were shown to achieve high performance on a
variety of computer vision challenges in 2012 [2]. Train-
ing deep CNN classifiers from scratch usually requires
thousands to millions of labeled images. To reduce
this labeling effort, we utilized transfer learning to adapt
a network previously trained using Earth images (Caf-
feNet [3]) for use with Mars orbital and surface images.
The initial versions of the two classifiers, HiRISENet and
MSLNet, were deployed on the Atlas for public use in
2017.

Data Sets: The data set used for HiRISENet con-
sists of 10,433 Mars landmark images cropped from 180
HiRISE map-projected images. We augmented this data
set using rotation, flipping, and brightness adjustment
methods to obtain a total of 73,031 landmark images
covering eight classes1. The data set used for MSLNet
consists of 6,691 MSL images collected by the Mastcam
left eye, Mastcam right eye, and MAHLI (Mars Hand
Lens Imager)2. The labels span 24 classes of engineering
interest (e.g., parts of the rover). Examples from both
data sets are shown in Figure 1.

Recent Improvements: Over the past year, we have
employed several methods to improve both the accuracy
of the classifiers and the reliability of their confidence
values.

1HiRISENet data: https://zenodo.org/record/2538136
2MSLNet data: https://zenodo.org/record/1049137

Figure 1: Example images from the HiRISENet (top) and
MSLNet (bottom) data sets.

First, we modified our fine-tuning methodology. The
original CaffeNet model was trained for 310,000 itera-
tions on 1.2 million ImageNet images from 1000 classes.
To fine-tune this model for HiRISE or MSL data, we pre-
viously used a learning rate multiplier of 1 for layers 1 to
7 and 10 for the final layer (fc8) [1]. This allowed only
small changes to the previously trained layers and larger
adaptation for the output (classification) layer. While in-
vestigating possible improvements to the MSL classifier,
we found that setting the multiplier to 0 for layers 1 to 4
(“freezing” them) enabled better generalization.

Next, we analyzed each classifier’s errors in the train-
ing and validation sets to determine the most common er-
rors and thereby develop a strategy for further improving
classifier accuracy. We created an interactive browser-
based Error Analysis Tool to enable fast review of clas-
sification errors in the training and validation data sets.
For the HiRISE classifier, we found that the most com-
mon classifier errors arose from (1) inconsistent crater
labels (e.g., some craters were missed; some degraded
craters were incorrectly labeled by humans as “other”)
and (2) failing to detect very faint, very small, or off-
center dark slope streaks. Both observations led us to
review and update the labels for these classes in the entire
data set. For the MSL classifier, we found that the “drill
hole” class (Figure 1, lower right) was the most common
culprit among the validation set errors. On further in-
spection, we discovered that all 36 drill hole images in
the training set were views of the same drill hole, thus lim-
iting the classifier’s ability to recognize new drill holes.
This inspired us to obtain more labeled drill hole images
from the training set timespan (MSL sols 3 to 181).
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Finally, we employed classifier calibration [4] to im-
prove the reliability of self-reported posterior proba-
bilities. We found that the most effective method for
HiRISENet was temperature scaling, which identifies
a temperature parameter T that is applied to the logit
values zi output by the classifier for item xi prior to
the conversion of zi into a posterior probability p =
maxk σ(zi,k/T ), where σ(·) is the softmax function and
zi,k is the logit for item i and class k. Calibration of
MSLNet is in progress.

Results: HiRISENet performance was generally
higher than MSLNet performance. The HiRISE data set
is more balanced and representative than the MSL data
set, and the total number of classes (8 versus 24) is lower,
so the problem may be inherently easier. The results
are shown in Table 1. Augmenting the HiRISE data set
improved training and generalization performance. Mod-
ifying the fine-tuning (“FT”) had little impact for HiRISE
but yieldedmajor improvements in performance forMSL.

Table 1: Classification accuracy for HiRISENet and MSLNet.
Classifier Train Val Test
HiRISE 88.3% 88.6% 84.3%
HiRISE+aug. 98.1% 91.8% 90.0%
HiRISE+aug.+FT 98.2% 91.2% 90.2%
MSL 98.7% 72.8% 66.7%
MSL+FT 99.8% 84.0% 76.9%

Classifier calibration using temperature scaling does
not change the predictions (or overall accuracy); instead,
it impacts accuracy at a given confidence cutoff (e.g.,
HiRISENet uses a 90% confidence threshold to decide
which results are shown to Atlas users) as shown in Ta-
ble 2. Classifier reliability is measured by the Expected
Calibration Error (ECE), a weighted sum of the differ-
ence between reported confidence and empirical accu-
racy across multiple confidence bins [4]. HiRISENet
ECE improved (lower is better) while test accuracy did
not change significantly. Reliability diagrams are a visual
representation of classifier calibration [4]. The reliabil-
ity diagram for HiRISENet after temperature scaling is
shown in Figure 2. The resulting confidence values align
closely with the (optimal) diagonal.

Table 2: ECE and classification accuracy at 90% confidence.
Classifier ECE 90% Test acc.
HiRISE+aug 0.056 93.45%
HiRISE+aug+calib. 0.036 93.46%

PDS Image Atlas: The Atlas3 is an interactive
browser-based interface that uses the Apache Solr in-
dexing system. Apache Solr implements Apache Lucene

3Atlas: https://pds-imaging.jpl.nasa.gov/search/
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Figure 2: Reliability diagram (top) and posterior probability
distribution (bottom) for HiRISENet after calibration.

syntax which powers the search and navigation features
of the Atlas. The image content-based search capabil-
ity is enabled in the Atlas via a two-step process: (1)
the classification results of HiRISENet and MSLNet are
indexed by Apache Solr, and (2) the indices are made
searchable in the Atlas. In addition to content-based
search, the Atlas supports a variety of functionalities that
allow users to easily and intuitively navigate millions of
archived images.

Future Work: Collecting high-quality labels is a
major challenge for any machine learning system. We are
evaluating active learning techniques to further reduce
the labeling cost and enable easy expansion to images
collected by other missions [5]. The class distribution of
the data sets used to fine-tune HiRISENet and MSLNet
are severely imbalanced and change over time, so we are
also exploring techniques to handle domain shift.
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