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Abstract—Onboard classification of remote sensing data is 
of general interest given that it can be used as a trigger to 
initiate alarms, data download, additional higher-resolution 
scans, or more frequent scans of an area without ground 
interaction. In our case, we study the sulfur-rich Borup-
Fiord glacial springs in Canada utilizing the Hyperion 
instrument aboard the EO-1 spacecraft. This system consists 
of naturally occurring sulfur-rich springs emerging from 
glacial ice, which are a known environment for microbial 
life. The biological activity of the spring is associated with 
sulfur compounds that can be detected remotely via spectral 
analysis. This system may offer an analog to far more exotic 
locales such as Europa where remote sensing of biogenic 
indicators is of considerable interest. Unfortunately, 
spacecraft processing power and memory is severely limited 
which places strong constraints on the algorithms available. 
Previous work has been performed in the generation and 
execution of an onboard SVM (support vector machine) 
classifier to autonomously identify the presence of sulfur 
compounds associated with the activity of microbial life. 
However, those results were limited in the number of 
positive examples available to be labeled. In this paper we 
extend the sample size from 1 to 7 example scenes between 
2006 and 2008, corresponding to a change from 18 to 235 
positive labels. Of key interest is our assessment of the 
classifier’s behavior on non-sulfur-bearing imagery far from 
the training region. Selection of the most relevant spectral 
bands and parameters for the SVM are also explored. 
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1. MOTIVATION 
The advent of satellite-based remote sensing has permitted 
vast swaths of otherwise difficult-to-access Earth terrain to 
come under close, regular scientific scrutiny. Of particular 
interest are deserts, ice sheets, mountain ranges, and other 
nearly or totally inaccessible locales [1][2][3]. These studies 
and others yield invaluable data on natural and human-
induced climate change, seasonal variation, global-scale 
dynamics, and a host of other relevant inquiries. In the 
realm of missions to other planets, remote sensing enables 
the otherwise impossible goal of analyzing large, 
inhospitable regions too distant for direct human 
observation and study. However, the same challenges 
remain no matter the application at home or among the 
stars: remote observation generates far more data than can 
ever be successfully downlinked. For non-terrestrial 
missions, the requirement of time from the Deep Space 
Network creates severe financial and political burdens that 
are often responsible for the decision to end a mission on an 
otherwise still functioning spacecraft.  

Several approaches have been employed to address this 
limitation. Data compression was legendarily utilized to 
rescue the science return of the Galileo spacecraft (high gain 
antenna deployment failure) [4] and continues to be a 
mainstay of satellite communication. Cooperation between 
in-situ spacecraft to relay data over the horizon or to boost 
transmission bandwidth has now also become possible [5]. 
Yet even as we increase our data throughput capability we 
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are also increasing the capacity for our sensors to generate 
truly enormous data sets. Spacecraft now carry 
hyperspectral cameras capable of sensing hundreds of 
wavelengths simultaneously in a streaming, real-time 
manner [6].  Despite all this data production and 
transmission capability, the majority of data collected by 
any streaming camera is redundant or otherwise 
uninteresting after a region has been initially scanned. 
Instead, key regions with unusual or dynamic features may 
be selected as high priority while static areas, once 
surveyed, may receive lower priority. Time-based events 
may be predicted and captured in similar manner. But often, 
events are either unpredictable or not known to exist prior to 
discovery. Thus an onboard detector capable of deciding 
when a region is interesting based on predefined criteria 
would yield a much higher science return. Many such 
detectors have been created for a variety of specialized 
applications such as floods [7], volcanic eruptions [8], and 
novel image detection aboard Martian rovers [9]. In our 
case, we are supporting NASA’s mission to discover living 
systems and their evidence by creating a remotely sensed 
detector for sulfur compounds. 

Prior work on precisely this question has been hampered by 
a lack of available labeled hyperspectral imagery [10]. We 
will be extending these results by including two orders of 
magnitude more data for both test and training sets. 

2. TARGET: BORUP FIORD, ELLESMERE ISLAND 
Set in the far north of the Canadian Arctic Archipelago 
(81°N, 81°W), Ellesmere Island abuts the northern edge of 
Greenland between the Lincoln Sea and Baffin Bay. Like 
other ice-covered terrain in our solar system, it does not 
appear at first glance to be particularly hospitable to life. 
Yet from the air can be seen vivid yellow stains along a 
glacial edge. Discovered by Benoit Beauchamp in the mid 
1990’s who also collaborated on later field investigations 
with Stephen Grasby, Damhnait Gleeson, and Marie-Eve 
Caron in 2006, these discolorations were identified as 
Supraglacial deposits associated with sulfur-rich springs 
flowing through and across a 200-meter thick glacier [11]. 
The telltale yellow stain was due to the presence of 
elemental sulfur, which dominates the composition of the 
deposits. The source of these minerals most likely relates to 
marine evaporite deposits of anhydrite (CaSO4) in the 
region’s bedrock. Unfortunately, the various deposition 
structures and spring locations greatly varied between field 
campaigns. As the Fiord is only accessible for three months 
of the year, the activation cycles of the springs during the 
remaining year are not known nor are the conditions that 
spur their flows. 

The springs themselves are interesting scientifically based 
only on the above, but more fascinating still is the presence 
of elemental sulfur, gypsum, and hydrogen sulfide gas. 
These three compounds contain sulfur in three different 
oxidation states. The presence of a complex redox system, 

in addition to such an abundance of elemental sulfur out of 
equilibrium with its environment, provided an indication 
that microbial mediation of the local geochemistry could be 
occurring. Testing the water from all ten known springs 
detected a rich microfauna of known and as yet unidentified 
microbes [12]. This arrangement of fissured permanent ice, 
sulfur-bearing subsurface rock, and seeping water is 
potentially analogous to the surface of Jupiter’s moon 
Europa. Frigid beyond any place on Earth, Europa still 
demonstrates surface sulfur-bearing mineral taint on 
otherwise solid ice along fractures [13] The reddish-tinged 
lenticulae (round-shaped potential upwelling) and long 
double-lined fissures speak of a subsurface ocean likely rich 
with dissolved minerals [14]. Studying the microbes 
surviving beneath the Borup Fiord glacier might therefore 
also shed light on potential habitats beneath Europa’s 
surface. As elemental sulfur occurs naturally generally from 
either volcanic or anaerobic bacterial processes, producing a 
remote elemental sulfur detector is a step towards a 
microbial life detector both for the cryosphere of Earth and 
potentially for Europa as well.  

3. INSTRUMENT: HYPERION ON EO-1 
The Hyperion imager aboard the near-polar-orbiting Earth-
Observing-1 spacecraft (EO-1) orbiting at 700 kilometers 
altitude resolves the Earth’s surface to 30 meter resolution 
simultaneously in 220 distinct spectral bands ranging from 
0.38 to 2.5 µm (near ultraviolet to short-wave infrared) [6].  
The first hyperspectral sensor to operate from space, it 
captures 7.5 kilometers by ~100 kilometers of land area 
with each image. Designed to assist mining, geology, 
forestry, agriculture, and environmental management 
through the classification of surface type and features, it has 
successfully generated over 27 Tb of raw data available as 
various products from the USGS. 

Although EO-1 has 220 bands of hyperspectral data 
available via the post-processed, downloaded products, 
onboard operation only has access to 12 bands at a time. 
Thus, any autonomous algorithm must select the 12 most 
relevant bands to the inquiry at hand. Selecting which of the 
220 bands to examine is of paramount interest. One 
consideration is the existence of decreased signal to noise 
ratios at increased wavelength (band number) [15]. We 
expect therefore that our selection process will likely favor 
shorter wavelength bands. 

4. DATA PROPERTIES 
We used seven flyover images of Borup Fiord as our test 
and training dataset (Table 1). Individual pixels were 
labeled by Damhnait Gleeson using the commercial ENVI 
toolkit, aerial photos, and the PixelLearn image labeling 
software developed by the Machine Learning Group at the 
Jet Propulsion Laboratory [16]. Each image is 256 pixels 
wide and of variable length (mean 3200 pixels) with 220 
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frequency bands available for each pixel. See Table 1 for the 
number and type of labels used in each image. We utilize 
the L1R Hyperion product [17] as it has been processed to 
reflectance (as opposed to radiance) to help mitigate such 
effects as sun angle. Further, we have taken seven similarly 
sized flyovers of regions far from the sulfur-bearing glacial 
springs that we label "Sulfur-Free" as a control for false 
positives, as shown in Table 2. Graphical versions of these 
provided labels are provided in Figure 1. Original results on 
this study were provided based entirely on training/testing 
utilizing the single 2006 image (Figure 1 top) [10]. 
 
We can show without any processing that distinction 
between sulfur and non-sulfur (ice and rock) pixels will be 
challenging simply by selecting two arbitrary wavelength 
bands and plotting the labeled data to investigate the degree 
of separation as shown in Figure 2. The sulfur pixels are 
well mixed with the ice pixels with some overlap with the 
rock pixels as well. Further, two subpopulations are evident 
in the pixels labeled as sulfur; we distinguish these as 
“Bright Sulfur” and “Dark Sulfur” and will discuss this 
distinction further in Section 6. Note that the “Dark Sulfur” 
points are especially easy to confuse with rock and similarly 
dark ice.  

 

Figure 2. All labeled data (pixels) shown as a scatter plot 
with two arbitrary wavelengths as the axis. The black 
separation lines are drawn by hand for illustration only. 

 
  

 
Figure 1. Expert-provided labels for source images of 
Borup Fiord. Springs are at the edge of the glacier. 
(yellow = rock, cyan = ice, violet = sulfur) 
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Table 1.  Test / Train Data Source Detail from Borup Fiord 
Scene ID X size 

(zonal) 
Y Size 

(meridional) 
Sulfur Labels Ice Labels Rock Labels 

EO1H0570012006187110PY 256 3399 18 75 58 
EO1H0570012007182110KF 256 3519 110 1322 579 
EO1H0570012007192110KF 256 3176 35 3016 2357 
EO1H0570012007205110KF 256 3455 25 2146 2067 
EO1H0570012007217110KF 256 3460 22 1643 1186 
EO1H0570012007224110KF 256 3183 19 2027 1712 
EO1H0570012007227110PF 256 3247 16 1800 1526 

 
Table 2.  “Sulfur-Free” Data Source Detail far from any sulfur source 

Scene ID X size 
(zonal) 

Y Size 
(meridional) 

Location 

EO1H0201122008017110KF 256 3242 Getz Ice Shelf, Antarctic 
EO1H0270062008086110KF 256 3176 Tyr 76, Arctic 
EO1H0300052008101110KF 256 3187 Thule AFB, Arctic 
EO1H0451162006327110PF 256 3242 Ross Ice Shelf 1, Antarctic 
EO1H0630112006093110KF 256 3399 Tuktoyaktuk, Arctic 
EO1H0692442004121110KZ 256 6587 War Hunt Ice Shelf, Arctic 
EO1H2161062007085110KF 256 3410 Larsen Ice Shelf, Antarctic 

 

5. METHODS 
Pixel Classification: Support Vector Machines (SVMs) 

Key to all our methodology here will be the use of the SVM 
[18]. This method was originally selected by Castano et al 
[10] based on empirical performance on Hyperion 
hyperspectral data and the substantial expertise available for 
consultation as well as their excellent performance for linear 
kernel implementations. These classifiers attempt to 
construct a hyperplane (in our case, within a 12 dimensional 
space of reflectances) that separates two classes of 
previously labeled data. A linear kernel SVM is defined by 
n+1 parameters: a weight (wi) for every training example 
(xi) and a scalar bias term (b). These weights and bias are 
determined during the training step by solving a quadratic 
programming problem with one degree of freedom: the 
regularization parameter C which determines how strongly 
to penalize training errors. Classification of a new example 
x is achieved by:  

 

where the linear dot product can be replaced by a kernel 
function K(xi,x) that implicitly maps each point into a new 
(possibility infinite dimensional) feature space in which 
linear separability is achievable. For this study, we 
examined both a linear kernel (simple dot product) and a 
Gaussian kernel parameterized by γ, the Gaussian width: 

 

which generally provides higher accuracy, due to increased 
representation power, and is an example of what we might 
be able to achieve given more spacecraft resources than 
generally available on EO-1. 

Feature Selection 

To accommodate the restrictions imposed in onboard 
computation, we must select 12 wavelength bands from the 
potential 220 available for Hyperion data. This is a classic 
feature selection problem, and we will compare the 
following methods of band selection: 

1) Greedy Forward Feature Selection [18]: Starting with the 
empty set, train a classifier based on a currently accepted set 
of bands and test performance as baseline. Then 
exhaustively add each band one at a time evaluating freshly 
trained classifiers for each new set. Select the one with the 
highest performance. Continue until 12 are selected. This 
procedure is known to be weak against the case of pairs or 
larger sets of data that must be admitted together to add 
information to the classifier. 

2) Recursive Feature Elimination (RFE) [18]: Starting with 
the entire 220 available bands, train a classifier on this 
accepted set and calculate performance. Then exhaustively 
remove each remaining band one at a time evaluating 
freshly trained classifiers for each new set. Select the one 
with the highest remaining performance. Continue until only 
12 bands remain. This procedure incorporates groups of 
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bands which together are meaningful but alone are less 
relevant, though it still does not explore the full space of 
possibilities. 

3) Domain expert manual selection: Request a 
knowledgeable party (Damhnait Gleeson) to guess, 
calculate, or intuit which 12 bands “should” be important 
for classifier generalization based on science, intimate 
instrument knowledge, and past experience. 

4) RFE based only on the 2006 data [10]: Same as (2) 
above, but using only the single source image from 2006. 
This is all that was previously available as labeled data for 
this region and is included for comparison. 

For each of these four sets of potential bands of interest, we 
trained linear kernel 2-class (sulfur / non-sulfur), 3-class 
(sulfur, ice, rock), and 4-class (bright/dark sulfur, ice, rock) 
SVMs [19]. The linear kernel was utilized for computational 
speed and simplicity due to the constrained speed and 
integer arithmetic of onboard operations. Statistics on 
success were measured via per-image cross validation, 
where one of the seven source images in Figure 1 / Table 1 
was used as a held-out test set and the others were used to 
train the SVM. 

We evaluated the impact of a large range of different values 
for C. C trades off penalties for errors on the training data 
against model complexity; small values permit better 
generalization while large values more accurately fit the 
training data. The “best” result will be some set of bands 
(one of the four sets selected above), C value, and number 
of permitted classes. This configuration can then be coded 
and uploaded into EO-1 for autonomous sulfur detection. 

Labeled Data Filtration 

In our search for a highly accurate classifier, we allowed the 
possibility that our labeled examples were less than pure. 
Labeling these pixels manually is a challenging task even 
for experts. Marginal, borderline, or even incorrect labels 
may be present especially given the coarse spatial resolution 
of the labels (see Figure 1). Umaa Rebbapragada has 
constructed a label confidence evaluation method based on 
averaging across multiple EM clustering’s of the labeled 
data named Pair-Wise Expectation Maximization (PWEM) 
[20][21]. In its general formulation, PWEM suggests that 
improved results may be obtained by permitting a 
reweighting of input labels based on these results; however, 
in our case we perform the much more coarse procedure of 
filtration of any labeled example less than 75% consistent 
with others of its same class. 

The final part of this study reports on the use of a Gaussian 
kernel, an advance over the linear kernel. A second hyper-
parameter, γ, must be swept across for generalization testing 
in addition to the standard SVM C. We do not anticipate 
being able to upload an algorithm to EO-1 based on a 
Gaussian, but it is interesting to examine just how much 

better such a classifier may perform. Future missions are 
likely to have increased capability and to be able to make 
use of Gaussian SVMs. 

6. RESULTS 
Band Selection 
 
The bands of interest generated by the three feature 
selection methods are shown in Figure 3 and Table 3. The 
standard deviation was calculated across all labeled 
examples for a given wavelength (2585 measurements for 
each of the 200 bands). The overall standard deviation 
pattern indicates the sensitivity of the Hyperion instrument 
[15] and is largely influenced by atmospheric absorption 
properties.  
 
Spectrum reflectance values should theoretically vary only 
between 0 (no reflectance) and 1 (total reflectance). 
However, as the wavelength increases so does the noise, 
eventually yielding obviously erroneous inclusions well 
outside this range. Unfortunately, the greedy forward 
selection method preferred some higher wavelengths that 
proved detrimental to its generalization later in the process. 
Due to computational limitations on runtime, the forward 
method performance was not pursued beyond this point. 
 

Table 3.  Band Selection Results (λ  nm) 
RFE 2006 

only 
RFE Greedy 

Forward 
Expert 

Pick 
426 426 426 426 
436 436 436 436 
446 446 446 446 
456 456 456 456 
506 466 556 466 
516 536 566 486 
526 546 576 506 
536 556 586 526 
546 566 596 546 
556 576 1448 566 
576 586 1791 586 
994 596 2013 626 

 
We should also consider the emitted spectrum of our target 
material. Elemental sulfur [22] has a rather unusual 
reflectance spectrum, ranging from 7% below 430 nm to  
~90% above 500 nm. Other than this transition between low 
and high, there is no structure to its spectra. Thus, we expect 
detecting its signature to be very challenging. Figure 3 
superimposes this reflectance over the selected bands with 
100% reflectance normalized to the graph maximum. 
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Figure 3. Band analysis including standard deviation across all labeled examples and acceptance by a selection method. 
Selection method picks have been placed with an arbitrary Y value on the graph for illustration only. The “Elemental S” line 
shows the % reflectance of elemental sulfur with 100% normalized to the top of the graph. 

 
 

 
Figure 4. PWEM estimate of label correctness. Everything left of the red line was filtered as being too uncertain. 
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Expanding from 3 to 4 Classes 
 
An early attempt at this analysis showed abundant false 
positives (FP) using the entirely of the sulfur training set 
and a 3-class SVM (~105 FP events per downlinked image). 
We suspected that there were multiple populations 
(including potentially false labels) within our sulfur training 
set. We applied a K-means clustering method [23] to the 
sulfur labels that immediately yielded two distinct 
populations: one with high mean reflectance and one low. 
We divided our sulfur labels according to the clustering 
results, yielding four classes, and discovered that most of 
the false positives were from the “dark” sulfur class. 
Therefore, although this division was not obtained via 
manual labels, it still provided a very useful refinement of 
the labeled data and, as we will show, led to improved 
performance. Physically, sulfur that occurs within rock rich 
pixels is extremely difficult to distinguish from sulfur-free 
rock-rich pixels. Table 4 shows the breakdown per image of 
bright and dark sulfur labeled examples. 
 
Table 4.  Test / Train Data Source Detail from Borup Fiord 
Scene ID Bright 

Sulfur 
Labels 

Dark 
Sulfur 
Labels 

EO1H0570012006187110PY 17 1 
EO1H0570012007182110KF 26 74 
EO1H0570012007192110KF 22 13 
EO1H0570012007205110KF 22 3 
EO1H0570012007217110KF 22 0 
EO1H0570012007224110KF 19 0 
EO1H0570012007227110PF 16 0 
 
Filtering Poorly Labeled Examples 
 
Armed with our three band sets of interest (RFE 2006, RFE, 
and Expert Pick), we now investigate the mislabeling 
comparison previously discussed. PWEM [20] identifies for 
each labeled example the probability that it was correctly 
labeled. Figures 4 & 5 show the distribution of these 
percentages for both the 3-class and 4-class labelings. Ice 
labels proved to be the most reliable, which is not surprising 
since selecting pure ice examples in the image is quite easy. 
Rock was similarly well labeled with a few remote outliers. 
However, sulfur was highly contentious. Examining the Y-
axis of Figure 4 (3-class labeling), we see not a single sulfur 
label exceeds 0.75 probability of being correct. Separating 
into bright and dark (X-axis) we immediately rise to 104 / 
144 bright sulfur labels as above 0.75 confident, and 39 / 91 
dark sulfur labels above 0.75 confident. At this point, we 
discarded any label not above 0.75 confident as too 
uncertain for use. We will report these results as “4class 
filtered.” This necessary step also has the unfortunate effect 
of removing 40% of our already very limited positive 
examples. However, again, we will see that this leads to an 
improvement in performance. The low-confidence pixels 
tended to occur near ice-rock boundary areas. The 0.75 filter 
limit was determined simply by empirical observation that 
the “clear” cases of ice and rock are rarely below this value 

while both sulfur classes span the entire range of 
probability. Any more stringent requirement would have 
seriously jeopardized our already limited positive example 
labeled data. 
 
SVM Performance Metrics 
 
Let us now define our metrics. The X-axis of all comparison 
graphs is the F-measure (F) [24] as calculated by the 
harmonic mean of recall (R) and precision (P): 

 

 
where LB are pixels labeled Bright Sulfur, LD are labeled 
Dark Sulfur, LI are labeled Ice, and LR are labeled Rock. 
Similar nomenclature is used for D to refer to detected 
(SVM classified) pixels. SCorrect is the total number of 
correct detections of bright sulfur (or dark sulfur as bright 
sulfur, to give the benefit of the doubt), SMissed is the total 
number of failed detections of labeled bright sulfur 
(identified as anything but bright sulfur), and SFalse is the 
total number of incorrect bright sulfur identifications (ice or 
rock identified as bright sulfur). We also compute two other 
statistics, both addressing false positives identified outside 
the original labeled pixels. If sulfur is detected in any 
unlabeled pixels within the source images, these are 
considered “likely false positives” and referred to as Likely 
FPOS on the graphs. The name derives from the fact that we 
cannot be certain there are not other sulfur sources 
elsewhere in this image, but they certainly should be small 
in number compared to the entire image. The second 
statistic of this type we call “Sulfur-Free FPOS” as it 
represents the number of pixels in the seven new scenes 
taken very far from the known sulfur source (images of 
clouds, opposite hemisphere ice sheets, frozen ocean, etc.). 
Any positives found in the Sulfur-Free images are simply 
mistakes. 
 
 
For each configuration, we train on six of the seven labeled 
images and use the seventh as test, then rotate through each 
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of the images as test for cross-validation. The precision, 
recall, F-measure, “Likely FPOS” and “Sulfur-Free FPOS” 
are then computed from the appended list of all tested 
pixels, i.e. precision, recall, and F-measure are calculated at 
the end of the cross validation, not for each cross-validated 
image. 
 
For all linear kernels, we evaluate the SVM hyper-parameter 
C ∈ {10-1 , … , 105} over 36 values ranging logarithmically. 
For the Gaussian kernel example, we use these same C’s but 
also vary the Gaussian width parameter γ ∈ {10-2 , …, 103} 
by factors of ten. These ranges spanned the empirically 
observed dynamic region between numeric instability and 
the SVM’s total failure to generalize. The number of 
intermediate values (36 x 6) was chosen based on the 
machine time available using JPL’s Nebula supercomputer. 
 

 
Figure 5. Histogram of label correctness. Everything left of 
the red line was filtered. Note that the histograms have been 
normalized to 1 for comparison despite each class being 
substantially different in number of labeled examples 
 
SVM Performance 
 
Figure 6 shows the performance of the SVMs for various 
class numbers and kernel type, and mislabeled filtration 
strategies. On the right we see the Sulfur-Free FPOS results 
along the Y axis, while on the left we find the Likely FPOS 
results. Note that there are always more Likely FPOS than 
there are Sulfur-Free FPOS. This makes sense, as the Likely 
FPOS is a harder problem (separate sulfur from nearby 
sulfur-like terrain) than separating entirely non-sulfurous 
terrain from sulfur-bearing surroundings. On the X axis in 
both plots is the F-measure, with each point representing a 
given SVM configuration of C, class number, set of 12 
wavelength bands, and in the case of the Gaussian kernel the 
width hyper-parameter γ. We have separated the sets of 12 
bands (Expert, original RFE result using only 2006 image, 
and current RFE result) into blue, red, and white points 
respectively. The optimal results would be points lying at 
the bottom-right of each graph with zero Likely / Sulfur-
Free FPOS (Y) and F-measure of one (X). Please note the y-
axis is a log scale in number of false positives. 
 
The linear kernel 2-class (sulfur / non-sulfur) SVM shows 

poor performance. While several configurations achieve an 
impressive F-measure of up to 0.80 - 0.82 for all three band 
selections, there are more than 104 Sulfur-Free FPOS. 
Similarly poor generalization occurs in the Likely FPOS of 
the unlabeled examples from the source image. Thus, 
though the labeled data was fit, it failed to generalize to 
more remote examples. 
 
The linear kernel 3-class (ice, rock, and sulfur) SVM shows 
immediate improvement in all three band selections with 
remarkable improvement in the Expert picked bands and the 
new RFE results. Sulfur-Free FPOS were reduced by two 
orders of magnitude to a mean of ~40 FPOS per Sulfur-Free 
image. Likely FPOS remained high, however, with a mean 
of ~3400 per image. The mean and maximum F-measure 
also increased with a new top achievement of 0.86. 
 
The linear kernel 4-class (ice, rock, “bright” sulfur-on-ice, 
and “dark” sulfur-on-rock) SVM demonstrated two 
immediate consequences relative to the 3-class performance. 
The first was that the Sulfur-Free FPOS actually increases 
to a mean of ~70 pixels per image. Likely FPOS was 
dramatically reduced yielding a mean of ~800 false 
positives per image. Most of the later improvement was due 
to the decision to define all sulfur on rock “dark sulfur” 
labels as unreliable and no longer count them towards our 
accuracy requirement. The mean F-measure increased 
further with a mean of ~0.9 and a maximum of 0.96. As we 
increased our performance by filtering out a portion of our 
positive labeled instances, a more rigorous method to 
remove contaminated training examples became attractive. 
  
Employing PWEM’s confidence estimation method on the 
4-class data and rejecting anything less than 0.75 confident, 
the mean F-measure of 0.90 was maintained while reducing 
the mean Likely FPOS to ~600 per image. Sulfur-Free 
FPOS reduced further to a mean of 24 pixels per image. We 
take these results to indicate that mislabeled training 
examples were indeed corrupting our results and generating 
false positives. While further filtration of example labels 
might in principle yield further improvements, we have 
already discarded 40% of our very limited positive 
examples for the gains shown here and further filtration is 
unlikely to improve performance. For EO-1 Hyperion effort, 
we would select one of the blue or white indicators on the 
graph representing a particular combination of band (Expert 
Pick or RFE) and C hyper-parameter (3-20 is roughly 
comparable in performance). This linear kernel SVM would 
then be uploaded for operation. Unfortunately, we still 
expect ~500 false detections on images near Borup Fiord. 
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Figure 6. SVM performance for 2-4 classes, with and without mislabel filtration, using linear and Gaussian kernels. X axis 
are F-measure while y-axis are FPOS from the same training image (Likely) or from distant non-sulfur-bearing images 
(Sulfur-Free). Note the Y axis is a log scale. 



 10 

 

Figure 7. Location of "Likely False Positives." Note the 
geographic separation of bright/dark sulfur in the middle 
frame (violet/green) shows the origin of the bimodal 
population among sulfur. Red is a false positive. 

Extending these results to Gaussian kernels (using only 

Expert and RFE bands) yields the last set of graphs. Note 
that both C and the Gaussian width (α) are hyper-parameters 
here resulting in 252 configurations per band selection set 
instead of 36 for a linear kernel. The Gaussian SVMs 
achieved a mean F-measure of 0.93 and maximum F-
measure of 0.98 using the 4-class filtered dataset, exceeding 
the best performance of the linear kernel. Mean sulfur-Free 
FPOS remains at ~ 50 pixels per image, while mean Likely 
FPOS remains high at again mean ~1000 detections per 
image. However, certain parameter pairings do show 
significant promise. 
 
False Positives in the Training Images “Likely FPOS” 
 
Our inability to extinguish unwanted false positives on the 
training images is troubling. A best result image using the 
Gaussian kernel results with C = 0.25, Gaussian width = 
1000, and RFE band selection showing the location of these 
false detections is provided in Figure 7. The accuracy for 
this case was an F-measure of 0.83, 0 sulfur-free FPOS, and 
~50 Likely FPOS per image. The top of the figure shows the 
original image (visible wavelengths only). The middle panel 
shows the location of the original labeled data where cyan is 
ice, yellow is rock, violet is sulfur on ice, and green is sulfur 
on rock. The last panel shows white for all labeled locations 
after filtration based on PWEM’s confidence estimation and 
red for “bright sulfur” false detections that were reported as 
Likely FPOS. We immediately observe a correlation 
between small icy valleys, glacier edges, and false 
detections. Thus, the filter has indeed learned to recognize 
terrain similar to where sulfur occurs but still has trouble 
detecting the (very faint) yellow tint to the sulfur-bearing 
region. 
 
This points out a weakness in this multiclass SVM 
application, namely that if a user provides examples of 
clean, unambiguous areas (such as our ice and rock labels) 
but then specifies a minority class within ambiguous 
background detail (such as sulfur only existing in ice-rock 
mixture pixels), the filter may accurately (according to the 
training data) begin to predict that mixes of ice and rock are 
good determinants of sulfur presence. Thus, we have 
constructed both a sulfur-detector and a rock-ice mixture 
detector at the same time.  

7. CONCLUSIONS 
Overcoming the practical challenges of autonomous 
detection oftentimes exceeds in difficulty the mathematical 
treatment or data interpretation itself. In our case, we faced 
erroneously labeled examples, a bimodal population within 
our labeled sulfur examples, a single geographic sulfur 
region for training, a limitation of only 12 out of 220 bands 
to examine, and restriction to a linear kernel. Even 
extending to the Gaussian kernel, we found our ability to 
remove false detections in highly similar (nearby) terrain to 
that which housed the sulfur example was lacking, resulting 
in at best ~50 false detections throughout a single mean 
image measuring ~ 256 x 3200 corresponding to 0.006% 
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false alarm rate. This is significantly superior to the figure 
cited by Castano of 0.2% based only on 2006 data. While 
these may seem like small numbers, we are attempting to 
detect small events isolated in frequency and region size. 
Thus false positives are very costly should such a detector 
be utilized to schedule additional satellite observation runs 
or downlink data. 
 
However, in the development and evaluation of this 
classifier we did determine that while three classes of terrain 
was a good fit to the data (ice, rock, and sulfur), to eliminate 
the majority of false positives especially on data far from 
the source images we were forced to carefully prune our 
input labels using filtration base on the PWEM estimation 
method. We also recognized that of the bimodal sulfur 
population, the “dark sulfur” class (sulfur occurring on rock) 
was the majority of the false positive source. By discarding 
the dark class as unreliable, we obtained significant 
improvement in our false positive rate overall but especially 
in distant imagery where less than one event in a mean 256 
x 3200 image is expected. All of this was done while 
preserving a representative F-measure of ~ 0.9 with regard 
to the filtered labels. 
 
Of feature selection methods, we demonstrated that 
Recursive Feature Elimination (RFE) remains an excellent 
tool to pare down uninformative, corrupted, or noisy 
satellite wavelengths when constructing such a detector, 
empirically better than a greedy forward method. We also 
showed that the addition of substantially more data than past 
work yielded a much more successful classifier (using bands 
selected by RFE vs. RFE 2006 only). Still, lack of positive 
labeled examples remains the most significant source of 
error. In particular, labeled sulfur sources that do not all 
geographically collocate would greatly enhance our 
generality and help to reduce false positives. 
 
The use of a Gaussian kernel did demonstrate a higher F-
Measure than was possible with the linear kernel with strong 
reduction of the FPOS. This indicates that when it becomes 
possible to operate a Gaussian kernel aboard a spacecraft 
such as EO-1, it should be pursued. However, the CPU time 
cost for such algorithms must always be weighed against 
their improvement in performance. We are currently 
investigating an implementation for the EO-1 spacecraft. 
 
A variety of options for further work on this front exist in 
the absence of new positive labels. One possibility would be 
to provide yet another class for “rock/ice mixture” separate 
from the sulfur positive examples to assist the classifier in 
avoiding nearby false positives. This would require further 
example labels from the domain expert that may or may not 
always be available. We treated our problem as though this 
was not an option. 
 
A second line of attack would include nonlinearity in into 
the model by computing functions of the input channels 
(differences, averages, ratios, etc. of various wavelength 
bands). This may enhance the contrast of the sulfur 

signature or eliminate confounding input such as ice/rock 
mixture information. 
 
Third, we may examine the SVM raw output directly for 
each classification. If the output for the “best fit” class is 
itself still negative, we might conclude that there is no 
sufficiently explanatory class and disregard the SVM’s 
classification. This could potentially reduce false positives 
dramatically. 
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