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 Abstract—This paper presents PWEM, a technique for 
detecting class label noise in training data. PWEM detects 
mislabeled examples by assigning to each training example 
a probability that its label is correct. PWEM calculates this 
probability by clustering examples from pairs of classes 
together and analyzing the distribution of labels within each 
cluster to derive the probability of each label’s correctness.  
We discuss how one can use the probabilities output by 
PWEM to filter, mitigate, or correct mislabeled training 
examples.  We then provide an in-depth discussion of how 
we applied PWEM to a sulfur detector that labels pixels 
from Hyperion images of the Borup-Fiord pass in Northern 
Canada. PWEM assigned a large number of the sulfur 
training examples low probabilities, indicating severe 
mislabeling within the sulfur class.  The filtering of those 
low confidence examples resulted in a cleaner training set 
and improved the median false positive rate of the classifier 
by at least 29%.12 
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1. INTRODUCTION 
Supervised learning algorithms are popular for building 
automated classifiers from a set of labeled training 
examples.   Achieving maximal classifier accuracy depends 
upon the selection of an appropriate learning algorithm, as 
well as high quality training data. 
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A human expert usually labels training data.  Unfortunately, 
the labeling of the training data can be an error prone 
process due to data entry error, human subjectivity 
(different experts may disagree on which label is correct 
[7]), or the use of an external data source to label data. For 
example, when labeling pixels in image data, the expert may 
use visual data rather than numeric values.  

Figure 1 shows the effect of mislabeled training data on 
classifier accuracy.  We introduced two types of noise into 
an eleven-class landcover data set: random and rule-based 
noise.  Under random noise, a training example’s label may 
be flipped to any of the other labels. Under rule-based 
noise, we only flip labels if the example’s assigned class is 
easily confused with any of the others according to rules 
specified by a domain expert.  We introduce up to 40% 
random noise and 25% rule-based noise in the landcover 
data set.  In both cases, we observe a significant decrease in 
classifier accuracy as class noise levels increase. 

This paper presents PWEM [5], a technique for detecting 
mislabeled training examples. PWEM assigns to each 
training example a probability of cleanliness.  These 
probabilities are calculated by clustering instances (without 
their class labels) from pairs of classes using Expectation 

Figure 1. Effect of random and rule-based noise on a 
landcover data set containing 3398 items.  The y-axis 
measures accuracy on an independent (clean) test set. 
The x-axis measures the percentage of mislabeled 
examples in the training set. 
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Maximization (EM) [8] to perform the clustering.  Once the 
EM algorithm estimates the data distribution, we apply the 
assigned labels to the clusters and evaluate how well the 
labels correspond to the natural groupings of the data.  
Intuitively, if an example that was assigned to class A 
clusters with examples that are mostly assigned to class B, 
there is a good chance that the "A" example is mislabeled. 
From the set of clusterings and the assigned labels, we 
calculate for each example the probability that the example 
was assigned the correct label.   

We present three options for using the probabilities 
calculated by PWEM.  One can filter out examples with low 
probability, use the probabilities as weights during training, 
or iteratively query the domain expert for new labels on 
examples with low probability. We also present an in-depth 
discussion of how the filtering option was used to improve 
the performance of a sulfur detector designed for use 
onboard the Earth-orbiting satellite EO-1.  Members of our 
team hypothesized that mislabelings in the training data 
caused the false positive rate of the classifier to be 
unacceptably high.  Because a positive classification can be 
programmed to trigger follow-up imaging, it is crucial to 
minimize the classifier’s false positive rate.  We applied 
PWEM to this problem, and discovered mislabeled 
examples in the training set’s sulfur class.  Filtering out the 
low-confidence sulfur examples improved classification 
accuracy and reduced the false positive rate of the classifier 
by approximately one half. 

We organize our paper by presenting the PWEM method in 
Section 2 and possible ways to use its probability outputs in 
Section 3.  In Section 4, we discuss the sulfur detection task 
to which we apply PWEM and the steps that led the 
members of our team to conclude that the sulfur training set 
contained mislabeled examples.  In Section 5, we describe 
the sulfur training data, and the contributions of PWEM to 
this problem in Section 6. 

2. PWEM 
PWEM works by calculating a probability of correctness for 
each example’s assigned label. Label correctness is defined 
in relation to the features of the training example.  PWEM 
also assumes that a mixture of Gaussians generates each 
class’s data. 

For each example x, PWEM outputs the probability P(l|x) 
that the label of x is l from set L, where L is the set of class 
labels.  We use clustering to find P(l|x) since, intuitively, 
one might expect instances from the same class to cluster 
together.  We can use clustering to generate a set of class 
probabilities by having each instance inherit the distribution 
of classes within its assigned cluster.  The drawback of this 
method is that there is no guarantee that a multi-class data 
set will cluster perfectly along class lines.  Feature selection 
may improve class separability, but it is possible that two or 

more classes may not separate under any circumstances 
because their data distributions overlap. 

We improve class separability by clustering pairs of classes. 
 For each pair of classes, we cluster only those examples 
assigned a label from one of the classes in that pair.  Thus, 
each example belongs to only |L|-1 clusterings. If a clean 
example has a lower confidence in one clustering due to 
class inseparability, it may still receive a high confidence in 
its other clusterings if its assigned class separates well from 
others. 

Given a set of |L|-1 clusterings for instance x, we calculate 
the probability that x belongs to class l as follows: 

 P(l|x)  = Σθ P(θ) P(l|x, θ) 
  = Σθ P(θ) Σc=1 to k P(l|c, θ)  P(c|x, θ) (1) 
 
where l is a class label, x is an instance, c is a cluster, k is 
the number of clusters, and θ is a given clustering. P(l|x) 
represents the probability that instance x should have class 
label l. P(l|x,θ) represents the probability that x should have 
label l given clustering θ. This probability is calculated by 
summing the probability that x belongs to cluster c (as 
calculated by our clustering method EM) times the 
probability that c should be labeled as l.  Summing over all 
clusters results in the probability that x should be labeled l. 
If P(l|c,θ) and P(c|x,θ) form probability distributions, it is 
trivial to show that P(l|x) also forms a probability 
distribution over the class labels. If we assume each 
clustering θ is equally likely, P(θ) is 1/(|L|-1).  Each P(l|x) 
acts as a confidence on the class label l for instance x. 

Although P(l|x) forms a probability distribution over the 
class labels, only the probability for the assigned label is 
useful given this scheme.  This probability distribution 
cannot be used to correct labels.  The reason is that example 
x only participates in clusterings where its assigned label is 
represented.  We leave to future work the calculation of a 
meaningful probability distribution that may be useful in 
correcting labels. 

We use the Expectation Maximization (EM) algorithm to 
perform the pairwise clusterings [8]. EM is an optimization 
method that finds the maximum likelihood estimates of 
parameters in probabilistic models that depend on some 
hidden variables.  Because we assume our training data 
conforms to a Gaussian mixture model, the hidden variables 
estimated by EM are the means and covariance matrices of 
the k Gaussians in the mixture, where k is a user-supplied 
input parameter to EM. We perform clusterings with 
multiple values of k, typically between two and four, in case 
a particular class is multi-modal.  We select the clustering 
with the k value that minimizes the Bayesian Information 
Criterion [6], a model selection criterion from statistics.
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Our implementation of PWEM in which we estimate mean 
and covariance matrices via EM assumes that the training 
data is well conditioned prior to using our methods.  If not, 
the user will experience computational issues associated 
with matrix singularity.  In the case of the sulfur training 
data, feature selection was applied to the original data and 
resulted in twelve bands that were well conditioned.  Thus, 
we were able to use an implementation of EM that estimates 
a full covariance matrix.  For data that is not well 
conditioned, a possible workaround is to use a version of 
EM that only assumes a diagonal covariance matrix for the 
mixture models.  We also implemented this version of 
PWEM, using an open source machine learning software 
package called WEKA [9].  We found that the assumption 
of a diagonal covariance matrix does not significantly 
impact the results of PWEM. 
 

3. DATA CLEANING OPTIONS 
PWEM is successful when it assigns low probabilities to 
mislabeled examples and high probabilities on clean 
examples.  Table 1 shows probability results from two scene 
segmentation data sets (segmentation, road), and the 
landcover data set.  We introduce up to 30% random and 
ruled-based noise on each.  Table 1 demonstrates that 
PWEM assigns lower probabilities to mislabeled instances 
versus clean instances on average. Having calculated 
probabilities for each example in the training set, we present 
three options for using PWEM’s probabilities to clean the 
training set.  The first is to choose a threshold and discard 
examples whose probabilities are below this value.  The 
advantage of this method is that it is the simplest of the 
three options to implement.  The drawbacks are the 
selection of the threshold value and the potential loss of 
valuable training examples. 

The second option is to use PWEM’s probabilities as 
instance weights during training.  Rebbapragada et al. 
compared weighting to discarding and found that instance 
weighting outperformed discarding on the data sets tested 
[5].  However, the instance weighting option requires a 
classifier that can incorporate instance weights during 
training.  

The third option is to use the PWEM probabilities to engage 
the domain expert in the process of iteratively cleaning the 
training data.  In this option, the domain expert is presented 
with the m lowest probability examples from PWEM.  The 
expert examines the labels on this set and relabels anything 
that is incorrectly labeled.  The training set is updated with 
the new labels.   The process repeats with PWEM only 
presenting examples the domain expert has not already 
seen.  The process terminates when the domain expert is 
satisfied with the cleanliness of the sets. This option is 
clearly the best in terms of ensuring the quality of the 
training data.  The drawback is that it requires a significant 
time commitment from the domain expert.  

For the sulfur detection problem, we chose to discard low 
probability examples.  We could not take advantage of 
instance weighting because our classifier implementation 
could not accommodate instance weights.  In future work, 
we plan to present low probability examples to our domain 
expert for iterative relabeling.  

 

4. SULFUR DETECTION ON EO-1 
In this section, we describe the sulfur detection problem and 
how we used PWEM to identify mislabeled examples in the 
training set of ice, rock and sulfur examples. The detection 
of sulfur in remote-sensing imaging supports NASA’s 
mission to discover evidence of living systems within our 
solar system.  The importance of sulfur detection to both 
science and NASA is described thoroughly in [1].  We 
summarize the key points in this paper, but refer the reader 
to [1] for more detailed information.  

Sulfurous glacial springs are of scientific interest because 
the presence of elemental sulfur (among other compounds) 
may be an indicator of microbial activity.  The Borup-Fiord 
Pass on Ellsmere Island in northern Canada is known to 
have sulfurous glacial springs.  Indeed, tests of these springs 
have yielded evidence of yet unknown strains of bacteria 
[10].  

DATA M/C RA10 RA20 RA30 RU10 RU20 RU30 
Segm M 0.45 (0.22) 0.46 (0.19) 0.47 (0.15) 0.39 (0.18) 0.45 (0.16) 0.53 (0.17) 
Segm C 0.82 (0.11) 0.77 (0.11) 0.73 (0.11) 0.83 (0.12) 0.78 (0.11) 0.74 (0.11) 
Road M 0.47 (0.15) 0.46 (0.13) 0.47 (0.12) 0.62 (0.16) 0.63 (0.15) 0.65 (0.13) 
Road C 0.85 (0.16) 0.83 (0.16) 0.81 (0.15) 0.86 (0.15) 0.84 (0.15) 0.82 (0.15) 
Land M 0.46 (0.19) 0.47 (0.16) 0.47 (0.13) 0.70 (0.17) 0.72 (0.16) 0.75 (0.15) 
Land C 0.86 (0.13) 0.83 (0.13) 0.79 (0.14) 0.90 (0.11) 0.89 (0.11) 0.88 (0.11) 

Table 1. Mean (standard deviations are in parentheses) probabilities of mislabeled (M) and clean (C) examples on 
three data sets with synthetic class noise.  RA denotes random noise, and RU denotes rule-based noise.  We artificially 
mislabeled 10, 20, and 30% of each data set. 



 4

Jupiter’s moon Europa is also thought to have an analogous 
landscape of ice, rock, and sulfur [4].  Images of Europa’s 
icy landscape show reddish-tinged upwellings that may be 
an indicator of sulfurous compounds on solid ice [3]. Thus, 

the study of sulfurous ice in the Borup Fiord pass may 
inform the study of Europa’s biological potential.  Given the 
inaccessibility of the Borup Fiord Pass and Europa, 
remotely-sensed images are the only source of regular data 
for those regions. 

EO-1, managed by NASA's Goddard Space Flight Center, is 
an Autonomous ScienceCraft that has onboard decision-
making abilities.  This means that EO-1 may autonomously 
modify its observation plan and schedule repeated 
observations of a scientific event or point of interest.  
Onboard processing can speed such modifications by the 
order of hours.  A sulfur detector onboard EO-1 can trigger 
follow-up imaging of the Borup-Fiord pass on the satellite’s 
next pass over the region.  It is crucial that imaging is not 
triggered on areas that do not contain sulfur.  Thus, 
minimizing the classifier’s false positive rate is an important 
goal. 

Figure 3. Example of a 4-class training image.  The 
bottom frame shows labeled pixels of ice (cyan), 
rock (yellow), bright sulfur (magenta) and dark 
sulfur (green). 

Figure 2. Expert-provided labels for source images of 
Borup Fiord. Springs are at the edge of the glacier.
(yellow = rock, cyan = ice, magenta = sulfur) 
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Mandrake et al. [1] discuss the challenges inherent in 
detecting sulfur from Hyperion images of the Borup Fiord 
pass.  The first set of challenges is related to the 
computational constraints of onboard processing.  For 
example, only twelve out of 220 bands may be analyzed at 
once.  One must employ feature selection to search for the 
best feature subset to use during training and classification.  
One must also select a classifier that yields good 
performance under integer arithmetic and tune its associated 
parameters. 

The second set of challenges concerns the quality of the 
training data.  Figure 2 shows the source of the training 
data. These are seven flyover images of the Borup Fiord 
pass that were labeled by a geologist on our team.  Detailed 
information about the training data and its labeling process 
can be found in [1].  The amount of training data available 
to Mandrake et al. was significantly larger compared to 
previous work [2].  However, the quality of the training data 
was questioned when preliminary results did not yield an 
adequate false positive rate.  

Mandrake et al. [1] identified two problems with the 
training data.   The first problem was that a single sulfur 

class did not adequately represent the sulfur examples.  A 
clustering of the training data revealed that the sulfur 
examples formed a bi-modal distribution.  Thus, the 
decision was made to partition the sulfur examples into two 
classes: bright sulfur and dark sulfur.  Thus, the training set 
was now relabeled to have four classes.  However, the re-
labeling of the training data did not result in a major 
reduction to the false positive rate of the classifier. At that 
time, the researchers from Mandrake et al. suspected that 
the problem was due to mislabelings in the training data.  
We used the PWEM method to determine whether the 
training data was mislabeled and present our analysis in 
Section 6. 

5. DATA 
Figure 2 shows the source images that were used to generate 
labels for the training data.  The original labels were rock, 
ice, and sulfur, depicted by the yellow, cyan, and magenta 
streaks.  Detailed information on how the images were 
labeled is provided by [1].   The training set contained 
12029 pixels labeled as rock, 9485 labeled as ice, and 235 
labeled as sulfur.  As described in [1], the sulfur class was 
eventually partitioned into two sub-classes: bright sulfur 
and dark sulfur.  There were 144 bright sulfur pixels and 91 
dark sulfur pixels. Tables 2 and 3 summarize the breakdown 
of examples by class in both training sets.  In both training 
sets, the sulfur examples are in the extreme minority. 
 

ROCK 12029 
ICE 9485 
SULFUR 235 

Table 2. Class breakdown of the 3-class training set. 

ROCK 12029 
ICE 9485 
BRIGHT SULFUR 144 
DARK SULFUR 91 

Table 3. Class breakdown of the 4-class training set. 

 
Figure 3 shows examples of light and dark sulfur in one of 
the training images.  The top and bottom panels are the 
same image.  The bottom panel shows the location of the 
labeled pixels of ice (cyan), rock (yellow), bright sulfur 
(magenta) and dark sulfur (green).  Using the bottom panel, 
one can locate bright and dark sulfur pixels in the 
(unlabeled) top panel to see how those classes manifest in 
the images.  

6. RESULTS
 We performed one run of PWEM on both the 3- and 4-
class training data sets, and analyzed both sets of 

Figure 4. Distribution of PWEM probabilities for 
the 3-class (top) and 4-class (bottom) training sets.  
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probabilities.  Figure 4 shows the distribution of 
probabilities in each training set. The top and bottom panels 
show that in both training sets, the majority of rock and ice 
examples are assigned probabilities above 0.7.  This is not 
surprising since these classes dominate the training data set 
and therefore have the most influence on the cluster models. 
If the rock and ice examples did not separate well in the 
rock/ice clustering of PWEM, then the probabilities would 
have been lower.  This is good evidence that the rock and 
ice examples were cleanly labeled. 
 
The top panel of Figure 4 shows that the 3-class training set 
has very few sulfur examples with a probability of 
correctness greater than 0.6.  Given the skewed nature of 
the 3-class training set, it is expected that the sulfur-rock 
and sulfur-ice clusterings would result in low probabilities 
for sulfur examples given the overwhelming amount of rock 
and ice present.  Using PWEM under extremely skewed 
class distributions could result in low probabilities that are 
indicative of the imbalance in the class distributions, not the 
correctness of the training set. 
 
The 4-class training set rectifies this problem because 
probabilities on sulfur examples are evaluated against three 
clusterings each, rather than two.  A bright sulfur example is 
evaluated against the bright-sulfur/ice, bright-sulfur/rock 
and bright-sulfur/dark-sulfur clusterings.  With an extra 
(approximately) class-balanced clustering to evaluate 
against, it is possible for the sulfur examples to achieve a 
higher probability.  Indeed, the bottom panel of Figure 4 
shows a greater spread in the sulfur probabilities, with many 
examples achieving a probability above 0.75.  With a larger 
spread in the probabilities, it is easier to determine which 
examples are likely mislabeled, and which are likely clean. 

 
The bottom panel of Figure 4 shows that PWEM calculates 
higher probabilities for the bright sulfur examples pixels 
compared to the dark sulfur.  Indeed, the mean probability 
for bright sulfur is 0.81.  For dark sulfur, it is 0.62.  PWEM 
indicates that the dark sulfur class is more severely 
mislabeled.  The left panel of Figure 5 shows the original 
bright and dark sulfur labels in light green and dark green. 
Note that a few dark sulfur pixels are mislabeled as bright 
sulfur. The right panel shows the PWEM probabilities for 
those pixels with probabilities over 0.9 in green, 
probabilities over 0.75 in yellow, and probabilities below 
0.5 in red. Note that the area containing light sulfur pixels is 
mostly yellow.  The area labeled as predominantly dark 
sulfur, has splotches of red because they were assigned low 
probabilities.  Our hypothesis is that the dark sulfur and 
rock examples are easily confusable. Because correctly 
labeling and classifying dark sulfur pixels are the harder 
problem, we focus our evaluation efforts on classifying 
bright sulfur. 
 
Due to our use of the SVM learning algorithm, we chose to 
clean our training set via filtering. We selected an arbitrary 
confidence threshold of 0.75 and discarded any bright or 
dark sulfur examples below this threshold. We retained 104 
out of 144 bright sulfur examples, and 39 of 91 dark sulfur 
examples.  This was approximately 72% of the bright sulfur 
examples, and 43% of the dark sulfur examples.  As 
discussed in [1] and above, the loss of more dark sulfur 
examples is understandable given that dark sulfur is difficult 
to distinguish from rock.  In contrast, bright-sulfur is 
relatively easier to distinguish from dark sulfur, rock and 
ice. 
 

Figure 5.  The left panel shows labeled bright sulfur (light green) and dark sulfur (dark green) pixels.  The right panel 
shows the probability ranges on those sulfur examples.  Green pixels have probabilities greater than 0.9, yellow pixels have 
probabilities greater than 0.75, and red pixels have probabilities less than 0.5. 
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Having discarded examples from the training set, we trained 
a Support Vector Machine (SVM) classifier to test the 
effects of the filtered training set on the false positive rate of 
the classifier.  We report results from an SVM classifier 
using a linear kernel.  We performed multiple runs of the 
classifier using different values for the regularization 
parameter C.  For each value of C, we performed seven-fold 
cross validation.  Specifically, we trained the classifier on 
six of training images, and test on the seventh, rotating each 
image as the test image. We calculated an F-measure score 
for each run, where F-measure was calculated as 
F=2PR/(P+R), and P and R are precision and recall 
respectively.  We modified the definitions of P and R to 
penalize less for mistakes on dark sulfur.  If the SVM 
identified an ice or rock example as dark sulfur, it did not 
count as a false positive.  Similarly, if the SVM failed to 
positively identify a dark sulfur example, the mistake was 
not counted as a false negative.  We only penalized for 
precision and recall mistakes on bright sulfur examples.  

A second evaluation metric was the mean number of false 
positives per image. This is simply the number of false 
positives averaged across each test image.  For this metric, 
we used two additional sets derived from different 
evaluation images. The first, referred to as “Likely”, 
consisted of all unlabeled pixels from the original training 
images (see Figure 2).  Because these images were 
unlabeled, they were most likely from regions that did not 
contain sulfur.  Therefore, positive classifications in these 
regions are likely to be false positives.  Of course, without 
explicit labels we cannot be absolutely certain that no sulfur 
exists in these areas.  The second set of evaluation images, 
called “Sulfur Free”, consists of other Hyperion images (not 
of the Borup Fiord Pass) in which we are certain there are 
no known sulfur sources.  Positive classifications on these 
regions are definitely mistakes.  
 
We present the F-measure results in Table 4, and the mean 
false positive results in Table 5.  EXPERT denotes results 
on the unfiltered training data using features (image bands) 
that were selected by the domain expert.  PWEM FILT is 
the same training set minus the any example whose 
probability of correctness was less than 0.75. We report the 
median and best result of all runs.  

  MEDIAN BEST 
EXPERT 0.92 0.98 
PWEM-FILT 0.91 0.98 

Table 4.  Median and best F-measure results on the 
original (EXPERT) and filtered (PWEM-FILT) training 
sets. 

 EXPERT PWEM FILT 
  MEDIAN BEST MEDIAN BEST 
Likely  981.59 422.49 697.16 459.73
Sulfur-Free 160.12 10.51 27.45 0.78 

 Table 5.  Median and best mean false positives per 
image results on both the “Likely” and “Sulfur-Free” 
evaluation sets.  

 
According to Table 4, the filtered training set provides no 
improvement over the original training set in terms of F-
measure.  PWEM’s contribution is in the reduction of false 
positives. On the Likely evaluation set, PWEM reduced the 
median false positives per image by approximately 29%.  
On the easier Sulfur Free evaluation set, PWEM reduced 
the median false positives per image by approximately 83% 
and also recorded a best false positive rate of one false 
positive per image. 
 

7. CONCLUSION 
This paper presents the PWEM method for detecting 
mislabeled training data.  We describe PWEM’s 
contributions to NASA’s sulfur detector that is scheduled 
for use onboard the EO-1 spacecraft.  By filtering the 
labeled training set based on PWEM’s estimated label 
probabilities, the false positive rate of the classifier is 
reduced, ensuring that fewer resources would be wasted if 
EO-1 is programmed to do follow-up imaging upon positive 
sulfur classifications.   

Coping with erroneous labeled data is critical for many 
scientific domains. This paper provided an in-depth study of 
how PWEM improved classifier performance in one 
particular domain through the filtering of low probability 
examples.  No doubt, PWEM can be useful in mitigating 
label noise in other domains.  Furthermore, using the 
probabilities to filter training sets is only one of three 
options available.  We also discussed the use of the 
probabilities as instance weights in learning algorithms that 
can take instance weights as inputs.  We also discuss a third, 
and possibly better option, to iteratively query the domain 
expert on labels that have a low probability of correctness.  
Because the probabilities calculated by PWEM are robust, 
we expect classifier performance to improve under any of 
these three options. 
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