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Introduction: After almost 20 years in space, 

NASA's Cassini spacecraft has delivered more than 
800K images.  While many of these images contain in-
valuable views of this unique region of the solar system, 
quite a few of them are navigation or calibration images 
or contain transmission artifacts.  To locate content in 
this image set is a challenge for scientists.  We report on 
an automated content detection system that aims to ad-
dress this problem. 

Image content detection: To detect content in Cas-
sini images, we employ deep convolutional neural net-
works (CNN), [2]. CNNs have shown significant prom-
ise in other areas, such as image [3] and speech [4] 
recognition, and language translation [5].  CNNs organ-
ize image content in increasingly complex representa-
tions starting at the pixel level up to entire objects, such 
as rings, craters, moons, and so on.  Lower-level infor-
mation, such as edges, corners, etc., are common to all 
content.  The specifics of how the low-level information 
gets combined into high level representations is unique 
to the domain and requires training of the network with 
target content and associated labels. 

Training CNNs: To start our training, we adapted 
the pretrained CNN [1] based on the ImageNet architec-
ture [2] using the Caffe framework [6].  To train the 
CNN, we randomly sampled 10K images from the Cas-
sini archives in the Planetary Data System Image Atlas.  
Each image was associated with one or more of 53 indi-
vidual classes, organized in 19 visual categories includ-
ing craters, rings, horizon, plumes, surface viewpoint, 
navigation, moon phases, artifacts, exposure.  The labels 
were chosen such that all image content in the training 
set were mapped to a descriptive word as Cassini scien-
tists use when searching Cassini images.  Example im-
ages from the training set are shown in Figure 2. 

Results on Cassini Images: An individual CNN 
was trained for each catefory to output a binary decision 
value to indicate if the image belongs to a member class 
or not.  CNNs also output a posterior probability of each 
classification, which can be interpreted as its confidence 
in the prediction.  Results from the CNNs that were 
trained to detect “navigation” and “crater” images are 

shown in Figure 1.  In all cases in this sample, the CNNs 
were able to classify the image content into crater and 
navigation classes correctly. 

We note that not all classes had examples that were 
equally distributed in the sampling of 10K training im-
ages.  Some classes had very few examples, while oth-
ers, such as navigation images, had significantly more 
examples.  For the classes with fewer examples, we 
opted to augment the number of images by creating new 
images derived from the original sample.  For each im-
age, we generated 40 new images by applying rotations 
and shifts of image pixels in both directions. 
 

Category   Train Test Mean Min 
Artifact (2) 4491 2246 99.6 99.2 
Body (4)  5223 2224 84.2 68.4 
Clouds (2)  7978 2363 99.8 99.5 
Craters (2)  5796 1365 100.0 100.0 
Distance (7) *24552 4299 92.1 81.0 
Haze (3) 10248 3166 97.7 94.3 
Horizon (2) 5530 1764 88.6 77.1 
Multi Obj (2) 5846 1290 84.8 69.7 
Nav (2) 5589 1675 99.8 99.6 
Noise (3) 8148 2317 93.6 83.3 
Over Exp (2) 6610 2614 100.0 99.9 
Phase (5) 13364 2573 93.1 78.6 
Plume (2) 9725 2591 99.8 99.6 
Ring (3) 5383 596 98.4 97.7 
Ripple (2) 5592 2295 100.0 100.0 
Sky (3) 6368 507 90.2 81.5 
Surface (2) 6036 3019 99.4 98.7 
Transient (3) 9074 2781 96.1 93.7 

 
Table 1: Results for all trained classes in different catego-
ries.  Numbers in each category indicate the number of bi-
nary classes considered in that category.  (*) Training and 
testing image counts include augmentation. 

Table 1 shows detection scores on all categories. 
Each category can contain one or more binary classes as 
indicated by the parenthetical numbers in the category 

Figure 1: Example results of CNNs trained to detect images 
containing craters (C) and navigation (N), i.e. only distant 
stars.  Scores are posteriors scaled to 0-100. 

C: 0.01 0.01 82.7 25.1 98.4 
N: 0.01 99.8 0.01 0.01 0.01 

Figure 2: A sampling of Cassini images showing various 
content for which we created individual labels. From left to 
right, the labels for these images included: craters, transi-
ent, rings, overexposure, multiple objects, and ripples. 
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columns.  Counts of positive classification are given as 
percentages. The “Mean” column shows average counts 
of correct detections for all classes combined in that 
category, while the “Min” column presents the 
minimum percentage of correct assignments across the 
classes of that category. 

Results on images from non-Cassini Missions: 
Once designed and tested on Cassini images, a natural 
extension for this work was to test it on images from 
non-Cassini missions.  For that purpose, we randomly 
selected a handful of images from the Galileo, Mars 
Global Surveyor (MGS), Lunar Reconnaissance Orbiter 
(LRO), and Magellan missions.  Table 2 shows example 
detections from these images.  The craters in the LRO 
image were missed, likely because of the automatic im-
age resizing in Caffe framework. 

 
 
 
 
 
 
 

Mission: Galileo MGS 
Craters: 0.01 0.01 
Navigation: 0.02 0.02 
  

 
 
 
 
 
 

Mission:  LRO Magellan 
Craters: 0.20 21.1 
Navigation: 0.01 0.03 
 

Discussion: The results presented in this work are 
promising for enabling content-based search in various 
NASA mission archives.  It is readily adaptable to other 
NASA images than Cassini by training the CNNs on 
content that is not already encountered by the CNNs.  
During this work, we found that certain classes were 
represented in significantly larger numbers than others. 
After augmenting the training data for the classes with 
fewer examples, we observed a significant increase in 
detection accuracy in smaller classes.  In practice, this 
and similar issues will need to be remedied before suc-
cessful application of CNNs in other NASA archives. 

Content-based image search is an important tool for 
scientists, who frequently have to search images manu-
ally or write ad-hoc scripts to retrieve images meeting 
certain criteria.  This capability can transform the way 

in which scientists interact with mission archives in sev-
eral ways.  Given images or even specific objects in im-
ages, archives can now be searched for similar content, 
or entire archives can be reduced to a handful of relevant 
image candidates to examine visually by filtering out ir-
relevant content.  

We developed a prototype of this capability that is 
available to the users of Atlas portal at the Planetary 
Data System for the Cassini mission: 

 
http://pds-imaging.jpl.nasa.gov/search/ 
 
Note that a complete vocabulary of labels describing 

scientifically relevant content is a dynamically changing 
list. Thus, introducing new labels will be necessary. 
This requires fine-tuning of the deep neural networks 
with the new content.  CNNs are well-suited for this task 
because they reduce the training effort by utilizing pre-
viously trained network layers as a starting point. 

While CNNs are primarily developed for image 
based data, images are not the only data type that can 
benefit from CNN applications.  The main challenge in 
such applications will be to develop a very large training 
set such that CNNs can be trained from scratch. 

Lastly, onboard deployment of maturing CNNs can 
facilitate various autonomous functions, such as data tri-
age, targeting, risk evaluation, and navigation. 
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