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Introduction: The TextureCam project is develop-

ing a “smart camera” that can classify geologic surfac-
es in planetary images. This would allow autonomous 
spacecraft to respond to science targets of opportunity 
during intervals between communications, such as long 
traverses [1,2]. Its surface classifications can identify 
new targets that were not anticipated in advance. The 
spacecraft might use this information to target these 
features with high-resolution instruments such as spec-
trometers and narrow-field cameras. Classifications 
could also inform data “triage” decisions, identifying 
high value images for prioritized downlink.  Finally, 
the surface classifications can serve as compressed 
maps of image content.  Each of these strategies can 
improve the science data returned at each command 
cycle and speed reconnaissance during site survey and 
astrobiology investigations. Our first year of develop-
ment has completed the image analysis algorithms and 
validated them in software tests. Here we survey these 
initial results, and explore several application areas 
relevant to Mars and beyond. 

Method:  The TextureCam instrument consists of a 
Virtex 5 FPGA component connected to any framing 
camera. Our prototype uses a commercial camera with 
a high-speed CameraLink interface. The image analy-
sis is currently implemented in software only. We use 
a random forest classification engine similar to Shotton 
et al [4], and fit this model using labeled examples 
supplied in advance by the analyst. The training pro-
cess optimizes a “decision tree,” a sequence of simple 
numerical tests applied to local neighborhoods of the 
image that together determine the texture classification 
of each pixel. This procedure is detailed in Thompson 
et al. [5].  After training, the model can extrapolate the 
statistical relationships to classify other scenes. Table 1 
shows the expected specifications of our prototype. 

Microscale Geologic Surface Classification: We 
have tested the texture retrieval software on two mi-
croscale imaging applications. First, we demonstrated 
simple particle size classifications into Wentworth size 
categories (Figure 1). These would permit rovers to 
interpret the sedimentology of the terrain en route, and 
could assist analyses by scientists on the ground. The 
image shows a simple size classification of a Mars 
Exploration Rover Microscopic Image into very coarse 
and medium sand categories (blue, green). We have 

also tested the system in the laboratory, recovering 
image textures of smooth-cut rock samples imaged 
under diverse lighting conditions. Tests of basalt sam-
ples suggest good performance when the lighting di-
rection remains within approximately 45 degrees of 
vertical, typical of midday imaging. (Figure 2).  

 

 
Figure 1.  Automatic inference of particle sizes in MI 
images.  Here the system identifies areas where parti-
cle sizes are predominantly large sand (blue) and me-
dium sand (green).  Image scale: approximately 10cm. 
 

 
Figure 2. Preprocessing with a “high pass filter” (green 
and red lines) removes large-scale shading effects and 
improves performance under variable illumination.  



Mesoscale Geologic Surface Classification: Re-
cent tests on images collected in the Mojave Desert 
demonstrate texture classification performance that is 
invariant to range. We separate the image into near-
field, mid-range, and far-field segments (0-2m, 2-6m, 
and >6m respectively), training a separate classifier 
model on each subset. At runtime, stereo data identi-
fies the parts of the scene which are relevant for each 
classifier. Cast shadows are apparent at mesoscales; we 
ignore these areas with a simple intensity threshold.  
Figure 3 shows the result on a typical scene from the 
Mojave Desert. 

Deep Space and Orbital Applications:  The same 
techniques can be used at larger scales. We are incor-
porating these methods into a flight demonstration on 
the IPEX cubesat, a microsatellite scheduled for launch 
in Oct. 2013 [6]. The spacecraft will carry a simple 
RGB framing camera, and periodically downlink im-
ages of the Earth. However, the bandwidth of commu-
nication with this spacecraft is limited so only one or 
two images can be downliked each day. The random 
forest classifier will run onboard the serial CPU, where 
its results can identify the best images for downlink. 
We will attempt to classify image regions correspond-
ing to four classes: the planetary limb, deep space, 
clear terrain, and cloudy terrain. Downlink will favor 
images containing as much cloud-free terrain as possi-
ble. As a side benefit the model will generate com-
pressable ~2KB “quicklook” maps of the scene content 
for downlink at very little bandwidth cost (Figure 4). A 
recent blind test on images from two high-altitude bal-
loon flights demonstrate that our initial model general-
izes well to new scenes. If successful, these tests will 
pave the way for further use of intelligent science im-
age analysis onboard spacecraft.  
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Figure 3.  Mesoscale scene from the Cima Volcanic 
Fields in the Mojave Desert.  It contains vesicular bas-
alt (blue), smooth basalt (green), and unstructured reg-
olith (red).  The left side shows the initial image. We 
train the model on separate images and apply it to this 
scene, yielding automatic classifications at right. The 
scene widths are ~5m (top) and ~1m (bottom). 
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Figure 4: Images from high-altitude balloon flights 
demonstrate a simple orbital mapping task. Top: train-
ing image from first balloon flight. Bottom: test image 
from second balloon flight. 

 
 Specification 
Pixel resolution 1200x1600px 
Classification frame rate 1Hz 
Power consumption ~30W (2 cameras, FPGA) 
Operating range 6cm-Infinity 
  

Table 1: System specifications for field prototype, in 
progress. 


