
Value, Cost, and Sharing:
Open Issues in Constrained Clustering

Kiri L. Wagstaff

Jet Propulsion Laboratory, California Institute of Technology,
Mail Stop 126-347, 4800 Oak Grove Drive, Pasadena CA 91109, USA

kiri.wagstaff@jpl.nasa.gov

Abstract. Clustering is an important tool for data mining, since it can
identify major patterns or trends without any supervision (labeled data).
Over the past five years, semi-supervised (constrained) clustering meth-
ods have become very popular. These methods began with incorporating
pairwise constraints and have developed into more general methods that
can learn appropriate distance metrics. However, several important open
questions have arisen about which constraints are most useful, how they
can be actively acquired, and when and how they should be propagated
to neighboring points. This position paper describes these open questions
and suggests future directions for constrained clustering research.

1 Introduction

Clustering methods are used to analyze data sets that lack any supervisory
information such as data labels. They identify major patterns or trends based
on a combination of the assumed cluster structure (e.g., Gaussian distribution)
and the observed data distribution. Recently, semi-supervised clustering methods
have become very popular because they can also take advantage of supervisory
information when it is available. This supervision often takes the form of a set of
pairwise constraints that specify known relationships between pairs of data items.
Constrained clustering methods incorporate and enforce these constraints. This
process is not just a fix for suboptimal distance metrics; it is quite possible for
different users to have different goals in mind when analyzing the same data set.
Constrained clustering methods permit the clustering results to be individually
tailored for these different goals.

The initial work in constrained clustering has led to further study of the
impact of incorporating constraints into clustering algorithms, particularly when
applied to large, real-world data sets. Important issues that have arisen include:

1. Given the recent observation that some constraint sets can adversely impact
performance, how can we determine the utility of a given constraint set, prior
to clustering?

2. How can we minimize the effort required of the user, by active soliciting only
the most useful constraints?
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3. When and how should constraints be propagated or shared with neighboring
points?

This paper begins with a description of the constrained clustering problem
and surveys existing methods for finding satisfying solutions (Section 2). This
overview is meant to be representative rather than comprehensive. Section 3
contributes more detailed descriptions of each of these open questions. In identi-
fying these challenges, and the state of the art in addressing them, we highlight
several directions for future research.

2 Constrained Clustering

We specify a clustering problem as a scenario in which a user wishes to obtain
a partition P of a data set D, containing n items, into k clusters or groups. A
constrained clustering problem is one in which the user has some pre-existing
knowledge about their desired P∗. Usually, P∗ is not fully known; if it were,
no clustering would be necessary. Instead, the user is only able to provide a
partial view V(P∗). In this case, rather than returning P that best satisfies the
(generic) objective function used by the clustering algorithm, we require that
the algorithm adapt its solution to accommodate V(P∗).

2.1 Pairwise Constraints

A partition P can be completely specified by stating, for each pairwise relation-
ship (di, dj) where di, dj ∈ D and di �= dj , whether the pair of items is in the
same cluster or split between different cluster. When used to specify require-
ments about the output partition, we refer to these statements as must-link and
cannot-link constraints, respectively [1,2]. The number of distinct constraints
ranges from 1 to 1

2n(n − 1), since constraints are by definition symmetric. It is
often the case that additional information can be automatically inferred from
the partial set of constraints specified by the user. Cluster membership is an
equivalence relation, so the must-link relationships are symmetric and tran-
sitive. Cannot-link relationships are symmetric but not necessarily transitive.
When constraints of both kinds are present, an entailment relationship permits
the discovery of additional constraints implied by the user-specified set [2,3].

The first work in this area proposed a modified version of COBWEB that
enforced pairwise must-link and cannot-link constraints [1]. It was followed by
an enhanced version of the widely used k-means algorithm that could also ac-
commodate constraints, called cop-kmeans [2]. Table 1 reproduces the details
of this algorithm. cop-kmeans takes in a set of must-link (Con=) and cannot-
link (Con �=) constraints. The essential change from the basic k-means algorithm
occurs in step (2), where the decision about where to assign a given item di is
constrained so that no constraints in Con= or Con �= are violated. The satisfy-
ing condition is checked by the violate-constraints function. Note that it is
possible for there to be no solutions that satisfy all constraints, in which case
the algorithm exits prematurely.
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Table 1. Constrained K-means Algorithm for hard, pairwise constraints [2]

cop-kmeans(data set D, number of clusters k, must-link constraints Con= ⊂ D × D,
cannot-link constraints Con�= ⊂ D × D)

1. Let C1 . . . Ck be the k initial cluster centers.
2. For each point di ∈ D, assign it to the closest cluster Cj such that violate-

constraints(di, Cj , Con=, Con�=) is false. If no such cluster exists, fail (return
{}).

3. For each cluster Ci, update its center by averaging all of the points dj that have
been assigned to it.

4. Iterate between (2) and (3) until convergence.
5. Return {C1 . . . Ck}.

violate-constraints(data point d, cluster C, must-link constraints Con= ⊂ D × D,
cannot-link constraints Con�= ⊂ D × D)

1. For each (d, d=) ∈ Con=: If d= /∈ C, return true.
2. For each (d, d �=) ∈ Con�=: If d �= ∈ C, return true.
3. Otherwise, return false.

A drawback of this approach is that it may fail to find a satisfying solution
even when one exists. This happens because of the greedy fashion in which items
are assigned; early assignments can constrain later ones due to potential conflicts,
and there is no mechanism for backtracking. As a result, the algorithm is sensitive
to the order in which it processes the data set D. In practice, this is resolved by
running the algorithm multiple times with different orderings of the data, but for
data sets with a large number of constraints (especially cannot-link constraints),
early termination without a solution can be a persistent problem. We previously
assessed the hardness of this problem by generating constraint sets of varying sizes
for the same data set and found that convergence failures happened most often for
problems with an intermediate number of constraints, with respect to the number
of items in the data set. This is consistent with the finding that 3-SAT formulas
with intermediate complexity tend to be most difficult to solve [4].

In practice, however, this algorithmhas provenvery effective on a variety of data
sets. Initial experiments used several data sets from the UCI repository [5], using
constraints artificially generated from the known data labels. In addition, experi-
mental results on a real-world problem showed the benefits of using a constrained
clustering method when pre-existing knowledge is available. In this application,
data from cars with GPS receivers were collected as they traversed
repeatedly over the same roads. The goal was to cluster the data points to identify
the road lanes, permitting the automatic refinement of digital maps to the indi-
vidual lane level. By expressing domain knowledge about the contiguity of a given
car’s trajectory and a maximum reasonable separation between lanes in the form
of pairwise constraints, lane-finding performance increased from 58.0% without
constraints to 98.6% with constraints [2]. A natural follow-on to this work was the
development of a constrained version of the EM clustering algorithm [6].
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Soft Constraints. When the constraints are known to be completely reliable,
treating them as hard constraints is an appropriate approach. However, since the
constraints may be derived from heuristic domain knowledge, it is also useful to
have a more flexible approach. There are two kinds of uncertainty that we may
wish to capture: (1) the constraints are noisy, so we should permit some of them
to be violated if there is overwhelming evidence against them (from other data
items), and (2) we have knowledge about the likelihood that a given constraint
should be satisfied, so we should permit the expression of a probabilistic con-
straint. The scop-kmeans algorithm is a more general version of cop-kmeans

algorithm that treats constraint statements as soft constraints, addressing the
issue of noise in the constraints [7]. Rather than requiring that every constraint
be satisfied, it instead trades off the objective function (variance) against con-
straint violations, penalizing for each violation but permitting a violation if it
provides a significant boost to the quality of the solution. Other approaches,
such as the MPCK-means algorithm, permit the specification of an individual
weight for each constraint, addressing the issue of variable per-constraint con-
fidences [3]. MPCK-means imposes a penalty for constraint violations that is
proportional to the violated constraint’s weight.

Metric Learning. It was recognized early on that constraints could provide
information not only about the desired solution, but also more general informa-
tion about the metric space in which the clusters reside. A must-link constraint
(di, dj) can be interpreted as a hint that the conceptual distance between di and
dj is small. Likewise, a cannot-link constraint implies that the distance between
di and dj is so great that they should never be clustered together. Rather than
using a modified clustering algorithm to enforce these individual constraints, it
is also possible to use the constraints to learn a new metric over the feature
space and then apply regular clustering algorithms, using the new metric. Sev-
eral such metric learning approaches have been developed; some are restricted
to learning from must-link constraints only [8], while others can also accommo-
date cannot-link constraints [9,10]. The MPCK-means algorithm fuses both of
these approaches (direct constraint satisfaction and metric learning) into a single
architecture [3].

2.2 Beyond Pairwise Constraints

There are other kinds of knowledge that a user may have about the desired par-
tition P∗, aside from pairwise constraints. Cluster-level constraints include exis-
tential constraints, which require that a cluster contain at least cmin items [11,12]
and capacity constraints, which require that a cluster must have less than cmax

items [13].
The user may also wish to express constraints on the features. Co-clustering

is the process of identifying subsets of items in the data set that are similar
with respect to a subset of the features. That is, both the items and the features
are clustered. In essence, co-clustering combines data clustering with feature
selection and can provide new insights into a data set. For data sets in which the
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features have a pre-defined ordering, such as a temporal (time series) or spatial
ordering, it can be useful to express interval/non-interval constraints on how the
features are selected by a co-clustering algorithm [14].

3 Open Questions

The large body of existing work on constrained clustering has achieved several
important algorithmic advances. We have now reached the point where more fun-
damental issues have arisen, challenging the prevailing view that constraints are
always beneficial and examining how constraints can be used for real problems, in
which scalability and the user effort required to provide constraints may impose
an unreasonable burden. In this section, we examine these important questions,
including how the utility of a given constraint set can be quantified (Section 3.1),
how we can minimize the cost of constraint acquisition (Section 3.2), and how we
can propagate constraint information to nearby regions to minimize the number
of constraints needed (Section 3.3).

3.1 Value: How Useful Is a Given Set of Constraints?

It is to be expected that some constraint sets will be more useful than others, in
terms of the benefit they provide to a given clustering algorithm. For example,
if the constraints contain information that the clustering algorithm is able to
deduce on its own, then they will not provide any improvement in clustering
performance. However, virtually all work to date values constraint sets only in
terms of the number of constraints they contain. The ability to more accurately
quantify the utility of a given constraint set, prior to clustering, will permit
practitioners to decide whether to use a given constraint set, or to choose the
best constraint set to use, when several are available.

The need for a constraint set utility measure has become imperative with
the recent observation that some constraint sets, even when completely accurate
with respect to the evaluation labels, can actually decrease clustering perfor-
mance [15]. The usual practice when describing the results of constrained clus-
tering experiments is to report the clustering performance averaged over multiple
trials, where each trial consists of a set of constraints that is randomly generated
from the data labels. While it is generally the case that average performance does
increase as more constraints are provided, a closer examination of the individual
trials reveals that some, or even many, of them instead cause a drop in accuracy.
Table 2 shows the results of 1000 trials, each with a different set of 25 randomly
selected constraints, conducted over four UCI data sets [5] using four different
k-means-based constrained clustering algorithms. The table reports the fraction
of trials in which the performance was lower than the default (unconstrained)
k-means result, which ranges from 0% up to 87% of the trials.

The average performance numbers obscure this effect because the “good”
trials tend to have a larger magnitude change in performance than the “bad”
trials do. However, the fact that any of the constraint sets can cause a decrease in
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Table 2. Fraction of 1000 randomly selected 25-constraint sets that caused a drop
in accuracy, compared to an unconstrained run with the same centroid initialization
(table from Davidson et al. [15])

Algorithm
CKM [2] PKM [3] MKM [3] MPKM [3]
Constraint Constraint Metric Enforcement and

Data Set enforcement enforcement learning metric learning
Glass 28% 1% 11% 0%

Ionosphere 26% 77% 0% 77%
Iris 29% 19% 36% 36%

Wine 38% 34% 87% 74%

performance is unintuitive, and even worrisome, since the constraints are known
to be noise-free and should not lead the algorithm astray.

To better understand the reasons for this effect, Davidson et al. [15] defined
two constraint set properties and provided a quantitative way to measure them.
Informativeness is the fraction of information in the constraint set that the al-
gorithm cannot determine on its own. Coherence is the amount of agreement
between the constraints in the set. Constraint sets with low coherence will be
difficult to completely satisfy and can lead the algorithm into unpromising areas
of the search space. Both high informativeness and high coherence tend to re-
sult in an increase in clustering performance. However, these properties do not
fully explain some clustering behavior. For example, a set of just three randomly
selected constraints, with high informativeness and coherence, can increase clus-
tering performance on the iris data set significantly, while a constraint set with
similarly high values for both properties has no effect on the ionosphere data
set. Additional work must be done to refine these measures or propose additional
ones that better characterize the utility of the constraint set.

Two challenges for future progress in this area are: 1) to identify other con-
straint set properties that correlate with utility for constrained clustering al-
gorithms, and 2) to learn to predict the overall utility of a new constraint set,
based on extracted attributes such as these properties. It is likely that the latter
will require the combination of several different constraint set properties, rather
than being a single quantity, so using machine learning techniques to identify
the mapping from properties to utility may be a useful approach.

3.2 Cost: How Can We Make Constraints Cheaper to Acquire?

A single pairwise constraint specifies a relationship between two data points. For
a data set with n items, there are 1

2n(n − 1) possible constraints. Therefore, the
number of constraints needed to specify a given percentage of the relationships
(say, 10%) increases quadratically with the data set size. For large data sets, the
constraint specification effort can become a significant burden.
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There are several ways to mitigate the cost of collecting constraints. If con-
straints are derived from a set of labeled items, we obtain L(L−1) constraints for
the cost of labeling only L items. If the constraints arise independently (not from
labels), most constrained clustering algorithms can leverage constraint properties
such as transitivity and entailment to deduce additional constraints automati-
cally. A more efficient way to obtain the most useful constraints for the least
effort is to permit the algorithm to actively solicit only the constraints it needs.
Klein et al. [9] suggested an active constraint acquisition method in which a
hierarchical clustering algorithm can identify the m best queries to issue to the
oracle. Recent work has also explored constraint acquisition methods for par-
titional clustering based on a farthest-first traversal scheme [16] or identifying
points that are most likely to lie on cluster boundaries [17]. When constraints are
derived from data labels, it is also possible to use an unsupervised support vector
machine (SVM) to identify “pivot points” that are most useful to label [18].

A natural next step would be to combine methods for active constraint acqui-
sition with methods for quantifying constraint set utility. In an ideal world, we
would like to request the constraint(s) which will result in the largest increase
in utility for the existing constraint set. Davidson et al. [15] showed that when
restricting evaluation to the most coherent constraint sets, the average perfor-
mance increased for most of the data sets studied. This early result suggests that
coherence, and other utility measures, could be used to guide active constraint
acquisition.

Challenges in this area are: 1) to incorporate measures of constraint set utility
into an active constraint selection heuristic, akin to the MaxMin heuristic for
classification [19], so that the best constraint can be identified and queried prior
to knowing its designation (must/cannot), and 2) to identify efficient ways to
query the user for constraint information at a higher level, such as a cluster
description or heuristic rule that can be propagated down to individual items to
produce a batch of constraints from a single user statement.

3.3 Sharing: When and How Should Constraints Be Propagated to
Neighboring Points?

Another way to get the most out of a set of constraints is to determine how
they can be propagated to other nearby points. Existing methods that learn
distance metrics use the constraints to “warp” the original distance metric to
bring must-linked points closer together and to push cannot-linked points far-
ther apart [9,10,8,3]. They implicitly rely on the assumption that it is “safe” to
propagate constraints locally, in feature space. For example, if a must be linked
to b, and the distance dist(a, c) is small, then when the distance metric is warped
to bring a closer to b, it is also likely that the distance dist(b, c) will shrink and
the algorithm will cluster b and c together as well. The performance gains that
have been achieved when adapting the distance metric to the constraints are a
testament to the common reliability of this assumption.

However, the assumption that proximity can be used to propagate constraints
is not always a valid one. It is only reasonable if the distance in feature space is
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Fig. 1. Three items (endgame boards) from the tic-tac-toe data set. For clarity,
blanks are represented as blanks, rather than spaces marked ‘b’. The Hamming dis-
tances between each pair of boards are shown on the right.

consistent with the distances that are implied by the constraint set. This often
holds true, since the features that are chosen to describe the data points are
consistent with the data labels, which are commonly the source of the constraints.
One exception is the tic-tac-toe data set from the UCI archive [5]. In this data
set, each item is a 3x3 tic-tac-toe board that represents an end state for the game,
assuming that the ‘x’ player played first. The boards are represented with nine
features, one for each position on the board, and each one can take on a value
of ‘x’, ‘o’, or ‘b’ (for blank). The goal is to separate the boards into two clusters:
one with boards that show a win for ‘x’ and one with all other boards (losses
and draws).

This data set is challenging because proximity in the feature space does not
correlate well with similarity in terms of assigned labels. Consider the examples
shown in Figure 1. Hamming distance is used with this data set, since the features
have symbolic values. Boards A and B are very similar (Hamming distance of
2), but they should be joined by a cannot-link constraint. In contrast, boards A
and C are very different (Hamming distance of of 8), but they should be joined
by a must-link constraint. In this situation, propagating constraints to nearby
(similar) items will not help improve performance (and may even degrade it).

Clustering performance on this data set is typically poor, unless a large num-
ber of constraints are available. The basic k-means algorithm achieves a Rand
Index of 51%; COP-KMEANS requires 500 randomly selected constraints to
increase performance to 92% [2]. COP-COBWEB is unable to increase its per-
formance above the baseline of 49% performance, regardless of the number of
constraints provided [1]. In fact, when we examine performance on a held-out
subset of the data1, it only increases to 55% for COP-KMEANS, far lower than
the 92% performance on the rest of the data set. For most data sets, the held-out
performance is much higher [2]. The low held-out performance indicates that the
algorithm is unable to generalize the constraint information beyond the exact
items that participate in constraints. This is a sign that the constraints and the
features are not consistent, and that propagating constraints may be dangerous.
The results of applying metric learning methods to this data set have not yet

1 The data subset is “held-out” in the sense that no constraints were generated on
the subset, although it was clustered along with all of the other items once the
constraints were introduced.
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been published, probably because the feature values are symbolic rather than
real-valued. However, we expect that metric learning would be ineffective, or
even damaging, in this case.

Challenges to be addressed in this area are: 1) to characterize data sets in
terms of whether or not constraints should be propagated (when is it “safe”
and when should the data overrule the constraints?), and 2) to determine the
degree to which the constraints should be propagated (e.g., how far should the
local neighborhood extend, for each constraint?). It is possible that constraint
set coherence [15] could be used to help estimate the relevant neighborhood for
each point.

4 Conclusions

This paper outlines several important unanswered questions that relate to the
practice of constrained clustering. To use constrained clustering methods effec-
tively, it is important that we have tools for estimating the value of a given
constraint set prior to clustering. We also seek to minimize the cost of acquir-
ing constraints. Finally, we require guidance in determining when and how to
share or propagate constraints to their local neighborhoods. In addressing each
of these subjects, we will make it possible to confidently apply constrained clus-
tering methods to very large data sets in an efficient, principled fashion.
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