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Abstract
NASA has acquired more than 22 million images from the
planet Mars. To help users find images of interest, we devel-
oped a content-based search capability for Mars rover surface
images and Mars orbital images. We started with the AlexNet
convolutional neural network, which was trained on Earth im-
ages, and used transfer learning to adapt the network for use
with Mars images. We report on our deployment of these clas-
sifiers within the PDS Imaging Atlas, a publicly accessible
web interface, to enable the first content-based image search
for NASA’s Mars images.

Introduction
The ongoing exploration of Mars by orbiting spacecraft and
surface rovers has generated an enormous amount of data
that continues to grow on a daily basis. A large portion of the
acquired data consists of images, which are stored and made
available to the public by NASA’s Planetary Data System
(PDS). The PDS currently contains more than 31 million
images, of which 22 million are from the planet Mars.

Connecting scientists and other users to images of interest
is a major challenge. The PDS Imaging Atlas allows users to
search by mission, instrument, target, date, and other param-
eters that filter the set of images. Previously, the searchable
parameters were all values that were known a priori, i.e., be-
fore the image was collected. However, users are often inter-
ested in finding images based on content (e.g., “show me all
images containing craters”), which is known only after ac-
quisition and must be extracted through content analysis.

Content-based searches can help further both science and
mission operations. In images collected by the Mars Science
Laboratory (MSL) rover, engineers are interested in analyz-
ing all images that contain the rover’s wheels so that they
can monitor wheel degradation over time. While some im-
ages are purposely aimed at the wheels, and therefore can be
obtained due to knowledge about the intended target of the
image, in other cases the wheel is captured serendipitously
in an image that was targeted at a nearby rock or soil. Using
content-based analysis to find all wheel images can greatly
increase the amount of relevant images for analysis.

Convolutional neural networks have achieved high perfor-
mance on a variety of image classification tasks (Razavian
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et al. 2014). However, they tend to require thousands to mil-
lions of labeled examples if trained from scratch. A com-
mon practical solution is to use transfer learning to adapt
a previously trained network to a new problem. This “fine-
tuning” approach enables practitioners to train networks for
new problems while leveraging the representation already
inferred by the original network. However, the limits of such
fine-tuning are not known, and we wondered whether a net-
work that was trained on Earth images could successfully be
adapted to operate on images from another planet.

We tackled the problem of content-based image search
for Mars images by adapting a typical Earth-image convo-
lutional neural network to classify the content in images
of Mars. One network, MSLNet, classifies images taken by
the Mars Science Laboratory rover, and the other network,
HiRISENet, classifies regions within large images collected
from Mars orbit. Both networks achieved high performance
in validation and testing, and their predictions have now
been integrated into the PDS Imaging Atlas to enable the
first public content-based image search capability for the
Planetary Data System.

Related Work
Automated image analysis has been used for decades to au-
tomatically detect surface features such as craters (Urbach
and Stepinski 2009) and dune fields (Bandeira et al. 2011)
in orbital images. More recently, the strong performance of
convolutional neural networks (CNNs) on image classifica-
tion tasks (Razavian et al. 2014), as well as their ability to
infer useful features rather than hand-coding them, has led
to their adoption in planetary science as well. For example,
CNNs recently were shown to out-perform a support vector
machine classifier when detecting two Mars surface features
of interest (volcanic rootless cones and transverse aeolian
ridges) in orbital images (Palafox et al. 2017). They have
also been applied to Mars rover images of the surface to clas-
sify terrain and inform navigation (Rothrock et al. 2016).

Deep Learning for Mars Images
We employed transfer learning to adapt the AlexNet im-
age classifier (Krizhevsky, Sutskever, and Hinton 2012) to
classify images from Mars. AlexNet was trained on 1.2 mil-
lion (Earth) images from 1000 classes in the ImageNet data
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Figure 1: MSL (surface) image classes. “CT” indicates a cal-
ibration target. “P. tube op.” stands for “Portion tube open-
ing.”

set. We adapted this network by removing the final fully
connected layer and re-defining the output classes, then re-
training the network with Caffe (Jia et al. 2014). We started
with Caffe’s BVLC reference model, which is a replication
of AlexNet that was trained for 310,000 iterations and pro-
vided by Jeff Donahue1. Following Caffe’s recommenda-
tions for fine-tuning2, we specified a small base learning rate
and stepsize (iterations between reductions in learning rate)
and a learning rate multiplier of 1 (how the rate is adjusted)
for all layers except the final layer, which was set higher.
Precise values are given below for each classifier.

We created two Mars data sets that contain images taken
from different perspectives: Mars rover images of the sur-
face and rover parts, and Mars orbital images of interesting
surface features. Each data set enabled the training of a cus-
tom fine-tuned CNN that can provide classifications of new
images from the same instruments as they are collected.

MSL Surface Data Set
We created a data set of 6691 images of the Mars surface
environment that were collected by three instruments on the
MSL (Curiosity) rover: Mastcam Right eye, Mastcam Left
eye, and MAHLI (Mars Hand Lens Imager). These cameras
differ in their focal length (100 mm, 34 mm, and 18-21 mm
respectively) and resolution (150, 450, and 14 µm/pixel)),
and field of view (5 degrees, 15 degrees, and 34-39 degrees).
The data set is composed of fully calibrated RGB thumb-
nail (256x256 pixel) versions of each image. This is the im-
age size used by Krizhevsky, Sutskever, and Hinton to train
AlexNet and also sufficiently large to enable identification
of the classes of interest. The labeled data set is available at
http://doi.org/10.5281/zenodo.1049137.

Twenty-four classes were identified by a Mars rover mis-
sion scientist. They include several instruments on the rover
(e.g., APXS, drill, DRT, MAHLI) and associated calibra-
tion targets (marked “CT”) as well as other rover parts (e.g.,
observation tray, inlet, scoop, wheel), plus two non-rover
classes (ground and horizon). An example of each class
is shown in Figure 1. The classes are in some cases very
heterogeneous with objects imaged from different angles
and magnifications, different backgrounds and illumination,
multiple objects in the same image, objects that are out of
focus, etc. Some images are RGB, while others are single-
band (grayscale) or appear in other colors due to instrument
filters.

HiRISE Orbital Data Set
Mars orbital images are collected in long strips as an in-
strument sweeps over the planet. For example, each im-
age collected by the HiRISE (High Resolution Imaging Sci-
ence Experiment) camera on the Mars Reconnaissance Or-
biter covers several square kilometers at a resolution of 30
cm/pixel. Rather than assigning labels on a per-image ba-
sis, it is more useful to identify interesting features within

1https://github.com/BVLC/caffe/tree/
master/models/bvlc_reference_caffenet

2http://caffe.berkeleyvision.org/gathered/
examples/finetune_flickr_style.html
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Figure 2: HiRISE (orbital) image classes.

Figure 3: Supervising UI image labeling web tool.

each image and classify them. We employed dynamic land-
marking (Wagstaff et al. 2012) to find visually salient “land-
marks” within each HiRISE image and cropped out a square
bounding box around each landmark, plus a 30-pixel border,
to create a data set for image classification. Processing 168
map-projected HiRISE images yielded 3820 grayscale land-
mark images, each of which we resized to 227x227. The la-
beled data is available at http://doi.org/10.5281/
zenodo.1048301.

The classes of interest that we identified in these Mars or-
bital images are craters, bright sand dunes, dark sand dunes,
and dark slope streaks (see Figure 2). Landmarks that did not
contain one of these features were labeled “other.” Because
the landmarks were detected within map-projected HiRISE
images, they also included many spurious detections of the
triangular black image border, which is very statistically
salient. Therefore, we included an “edge” class in our la-
beled data to capture (and filter out) such images.

We developed a web-based image labeling tool3 to facil-
itate the labeling of the thousands of images in this data
set (see Figure 3). This Supervising UI server takes in a
set of images and a list of class names and enables multi-
ple users to simultaneously contribute labels to a given data

3https://github.com/USCDataScience/
supervising-ui

set, thereby distributing the workload. Unlabeled images are
randomly presented until all images in the data set acquire
labels, which are stored in an SQLite database and can be
downloaded as a .csv file. Users who are unsure about the
classification of a given image can click “Later” to skip it so
that others can label the image (i.e., users are not forced to
make a possibly unreliable guess).

Experimental Results
We trained two classifiers to operate on different kinds of
Mars images: (1) MSLNet: Mars surface images collected
by the MSL rover and (2) HiRISENet: Mars orbital images
collected by the Mars Reconnaissance Orbiter.

MSLNet: Mars Rover Surface Images
We divided the MSL images into train, validation, and test
data sets according to their sol (Martian day) of acquisition.
This strategy is more appropriate than a random split since
it models how the system will be used operationally with an
image archive that grows over time. The images were col-
lected from sols 3 to 1060 (August 2012 to July 2015); Ta-
ble 1 shows the division into train, validation, and test sets
by sol range. Because images are not collected with equal
frequency by every instrument on every sol, the number of
examples in each of the data set varies.

We fine-tuned the MSLNet classifier for 3000 iterations
with a base learning rate of 0.0001, stepsize 500, and final
layer learning rate multiplier 25. We compared the classi-
fication accuracy of the trained model to that of random
selection as well as a simple baseline that always predicts
the most common class observed in the training set, which
was “ground” (see Table 2). MSLNet strongly outperformed
both baselines. Interestingly, performance was lower on the
test set than the validation set. The imbalanced class repre-
sentation as well as evolving mission practices in terms of

Table 1: MSL image data sets, by instrument and sol range.

Train Val Test
3–181 182–564 565–1060

Mastcam Left (ML) 1491 189 202
Mastcam Right (MR) 1935 94 373
MAHLI (MH) 320 1357 730
Total num. images 3746 1640 1305



Table 2: Classification accuracy on MSL (rover) surface im-
ages. The best performance on each data set is in bold.

Classifier Train Val Test
Random 4.2% 4.2% 4.2%
Most common 62.5% 5.3% 19.5%
MSLNet 98.7% 72.8% 66.7%
MSLNet-inst 98.7% 83.7% 50.2%
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Figure 4: MSL image classification accuracy as a function
of confidence threshold.

which items were imaged and with what instrument settings
are likely contributing factors. This result is evidence that it
will be important to periodically update MSLNet by provid-
ing a labeled sample of newly acquired images.

The CNN provides a posterior probability for each predic-
tion that we employed to further increase the classifier’s op-
erational accuracy. We specified a confidence threshold such
that predictions with lower probabilities were omitted from
the results. Figure 4 shows accuracy as a function of confi-
dence threshold for the validation and test sets. Employing
a confidence threshold of 0.9 elevates validation accuracy to
94.3% and test accuracy to 84.0%. The fraction of absten-
tions was 41% and 52% respectively. For this application,
users would prefer to have fewer results of higher quality
than more results with lower quality.

We also experimented with training instrument-specific
classifiers to see if they would perform better than a sin-
gle generic MSL classifier. MSLNet-ML was trained us-
ing only images captured by the Mastcam Left eye cam-
era, and the same strategy was employed to train MSLNet-
MR and MSLNet-MH on their respective image data sub-
sets. We evaluated classification accuracy of an ensemble
model in which new images were classified by the appro-
priate instrument’s model. The results appear in Table 2 un-
der “MSL-inst”. We found that training accuracy was iden-
tical but that validation performance increased significantly.
However, performance on the test set instead went down.
Again, the imbalanced class distributions and evolving im-
age characteristics likely influenced the results.

Table 3: Classification accuracy on HiRISE (Mars orbital)
images. The best performance on each data set is in bold.

Train Val Test
Classifier (n = 2734) (n = 546) (n = 540)
Random 16.7% 16.7% 16.7%
Most common 51.8% 56.2% 54.4%
HiRISENet 99.1% 88.1% 90.6%
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Figure 5: HiRISE image classification performance as a
function of confidence threshold.

HiRISENet: Mars Orbital Images
We split the HiRISE data set into train, validation, and test
sets by the HiRISE source image identifier, to ensure that
landmark images from the same source image did not appear
in more than one data set. We used 80% of the source images
for training, 15% for validation, and 15% for testing.

We fine-tuned the HiRISENet classifier for 5300 itera-
tions with a base learning rate of 0.0001, stepsize 20000,
and final layer learning rate multiplier 10. The results are
shown in Table 3, along with the performance expected for
random predictions and the most-common baseline. In this
domain, the “other” class was the most commonly observed
class in the training set. The HiRISENet classifier strongly
outperformed both baselines.

In comparison to the MSLNet results, performance on the
HiRISE data set was generally higher. The data sets were
more balanced and representative, and the total number of
classes (5 versus 24) was lower, so the task may be in-
herently easier. Figure 5 shows classification accuracy as a
function of confidence threshold (note change in y-axis scale
compared to Figure 4). Applying a confidence threshold of
0.9 yields a validation set accuracy of 90.3% (abstaining on
only 11% of the images) and a test set accuracy of 94.5%
(abstaining on 13%).

The most common errors in the test set were 19 images
from the “other” class that HiRISENet classified as “edge”,
and 14 “bright dune” images that HiRISENet classified as
“other.” These classes have significant conceptual overlap
(e.g., how much of the black image edge must be present
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Figure 6: HiRISE test set precision and recall for each class.

to label an otherwise featureless terrain as “edge” instead
of “other”?). Figure 6 shows the per-class precision and re-
call achieved on the test set. The “streak” class is not shown
as HiRISENet did not classify any test images into this
rare class (so precision is undefined). There are only two
streak images present in the test set; both were missed. Re-
call was highest (100%) for the “dark dune” class, while
precision was highest (100%) for the “bright dune” class.
The apparently low precision for “dark dune” occurred be-
cause HiRISENet incorrectly classified two “other” images
as “dark dune”; both predictions had low posterior probabil-
ities (0.48 and 0.70).

Deployment for the PDS Imaging Atlas
The goal of training Mars image surface and orbital classi-
fiers is to benefit scientists and members of the general pub-
lic who are interested in finding images that contain certain
types of features. Therefore, we integrated the classifier’s
predictions into the PDS Imaging Atlas4, a publicly accessi-
ble search interface to NASA planetary images.

The PDS Imaging Node Atlas III provides faceted navi-
gation, an interactive style of browsing datasets that allows
users to progressively filter a set of items to those of most
interest. Faceted navigation has been utilized in the retail in-
dustry since the early 2000s (e.g., amazon.com and Google
Shopping). A facet is a distinct feature or aspect of a set of
objects (e.g., cost, size, style) or a way in which a resource
can be classified (e.g., content classification).

In the Atlas III, facets are defined by the most commonly
used search criteria for imaging datasets, including mission
name, instrument name, target, location meta-data (latitude,
longitude), time constraints, etc. We have now added a new
facet for Image Class (see Figure 7). When the user specifies
a facet value, such as “Image Class” = “wheel”, the results
are filtered to contain only matching images, and the counts
associated with all remaining facet values are updated ac-
cordingly. Older search systems required the user to guess
which constraint they should apply next to narrow down the
results; faceted search reduces the need for this kind of prior
knowledge, which was a common user complaint.

4https://pds-imaging.jpl.nasa.gov/search/

Figure 7: PDS Imaging Atlas faceted search. Users can click
image classes (left panel) to obtain images that contain con-
tent of interest, or enter class names via free text search.

(a) MSL image class queries

(b) HiRISE image class queries

Figure 8: PDS Imaging Atlas queries for image classes be-
tween January and August 2017. Note: metrics were un-
available for April 2017.



The Atlas also now provides free text search. A user can
type “crater”, and the resulting crater images are displayed.
The search for crater is applied as both a facet-based query
and a free text search of the ingested label meta-data.

We populated the Atlas database with classifications for
the entire archive of MSL Mastcam, Navcam, and MAHLI
images as well as all MRO HiRISE (calibrated) images. For
MSL, we stored classifications for 3.7 million images (omit-
ting thumbnail images) and provided the user with a confi-
dence threshold slider to filter as desired. For HiRISE, we
faced a different situation since the image classifications
were of individual surface features within a larger image,
not the entire image itself. In this setting, the number of de-
tected landmarks of each class within each image is mean-
ingful. We generated a catalog of all HiRISE landmarks with
a posterior probability of at least 0.9 and provided the user
with a slider to specify the minimum number of landmarks
within each image. The high-confidence landmarks spanned
a total of 16,344 HiRISE images.

We have compiled usage statistics by tracking Atlas
queries that contain search terms related to the MSLNet or
HiRISENet classes. As shown in Figure 8, we have seen in-
creasing usage since the beginning of 2017. The raw num-
ber of queries is much higher for MSLNet classes than for
HiRISENet classes, which might be due to the richer set of
available classes, higher interest in rover part images in the
user community, and/or our presentations to the MSL sci-
ence team that directly advertised this capability.

Conclusions and Next Steps
In this work, we found that a convolutional neural network
that was trained on Earth images can successfully be fine-
tuned to adapt to classify Mars images. The transfer learn-
ing process was successful despite significant differences in
image properties, imaging conditions, and classes of inter-
est. We deployed networks that were trained on surface and
orbital images of Mars to the PDS Imaging Atlas to enable
the first content-based search of Mars images. Users have
adopted this capability with enthusiasm as shown in the in-
creasing number of content-based queries received by the
Atlas.

An important lesson that came from our MSLNet experi-
ments was that, for a mission that moves into new environ-
ments and changes its imaging practices over time, periodic
labeling of new data and updating of the trained classifier
will be needed. HiRISE is in a fixed orbit and surveys the
entire planet, so the distribution of images over time does
not change the way MSL’s image distribution does.

We are now in the process of integrating the classifiers
into the data ingestion pipeline for the Atlas. Each mission
delivers a batch of new images to the PDS on a regular
schedule (e.g., every three months). We have classified the
entire archive of current images and will automate image
classification as new images arrive.

We are currently developing an extension to the Atlas web
interface that will provide overlays for each HiRISE image
to show the location of each classified landmark. Rather than
seeing that a given image contains five craters, users will see
those craters outlined with their bounding boxes. We expect

this visualization to increase the utility and interpretability
of the classifier’s predictions.
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