
K-means in Space: A Radiation Sensitivity Evaluation

Kiri L. Wagstaff kiri.wagstaff@jpl.nasa.gov
Benjamin Bornstein benjamin.bornstein@jpl.nasa.gov

Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109 USA

Abstract

Spacecraft increasingly employ onboard data
analysis to inform further data collection
and prioritization decisions. However, many
spacecraft operate in high-radiation envi-
ronments in which the reliability of data-
intensive computation is not known. This pa-
per presents the first study of radiation sen-
sitivity for k-means clustering. Our key find-
ings are 1) k-means data structures differ in
sensitivity, which is not determined solely by
the amount of memory exposed; 2) no special
radiation protection is needed below a data-
set-dependent radiation threshold, enabling
the use of faster, smaller, and cheaper on-
board memory; and 3) subsampling improves
radiation tolerance slightly, but the use of kd-
trees unfortunately reduces tolerance. Our
conclusions can help tailor k-means for use
in future high-radiation environments.

1. Introduction

Onboard machine learning and data analysis meth-
ods are necessary for accommodating the increasingly
ambitious goals of future spacecraft missions, such as
autonomous and opportunistic exploration of remote
targets like Titan and Europa. Support vector ma-
chines (SVMs) are already being used onboard the
EO-1 Earth orbiter to classify hyperspectral image
data and autonomously trigger additional observations
of key events such as lake ice thaw (Castano et al.,
2005). Clustering methods can provide highly com-
pressed summaries of numeric data, and they are par-
ticularly useful for imaging applications, since they can
provide segmentations of a scene as well as a summary
of the main components (cluster centers). In an on-
board setting, clustering results can inform local deci-

Appearing in Proceedings of the 26 th International Confer-
ence on Machine Learning, Montreal, Canada, 2009. Copy-
right 2009 by the author(s)/owner(s).

sions about which follow-up observations to make and
how to prioritize data for transmission to Earth. The
summaries can also be transmitted preemptively, pro-
viding ground operators with a quick look that enables
them to decide whether to consume the bandwidth
needed to download the full data set.

Onboard clustering requires adapting to the onboard
computing environment, which differs significantly
from the desktop environment in terms of computa-
tional power, available memory, storage space, and
the impact of a crash or reboot. Critically, onboard
computing for planetary missions must also cope with
high radiation doses, which can alter data during anal-
ysis and corrupt the results. These effects cannot be
modeled as Gaussian data set noise, because 1) the
impact of a flipped bit can vary by orders of mag-
nitude, depending on the bit affected, and 2) ongoing
data alteration occurs throughout the analysis process.
If the analysis results are used to inform subsequent
autonomous decisions about data collection and path
planning, the possibility of corruption presents a ma-
jor mission risk. This issue is generally addressed by
using either fully radiation-hardened memory (usually
with redundant components and voting) or special bit
encoding schemes (consuming additional bits to detect
and correct errors). Both strategies increase the total
amount of memory required, therefore increasing mass
and cost. Both can also result in memory with slower
response times due to the additional complexity.

In this paper, we investigate how much radiation pro-
tection is needed and whether some (or all) of the
data used by a clustering algorithm could be stored
in smaller, cheaper, and faster unhardened RAM. No
one has yet examined the innate radiation tolerance
(or sensitivity) of any machine learning or data anal-
ysis algorithms. We seek to answer these questions:
1) What is the relationship between radiation-induced
bit error rates and actual algorithm errors? 2) Which
k-means variants are the most radiation-tolerant? 3)
Which data structures (if any) could be stored in un-
hardened memory without sacrificing accuracy?

K-means in Space: A Radiation Sensitivity Evaluation

We analyzed the behavior of the k-means clustering al-
gorithm (MacQueen, 1967), selected due to its simplic-
ity, widespread use, and applicability to multiple do-
mains. We ran k-means in environments with increas-
ing radiation levels using a software radiation simula-
tor (BITFLIPS), testing behavior on benchmark and
satellite image data sets. We also studied the sensi-
tivity of individual data structures used by the algo-
rithm to determine which ones require the most radi-
ation protection and which can make use of cheaper,
faster, lower-mass memory. Finally, we evaluated two
k-means variants with faster runtimes (and therefore
less exposure to radiation): subsampling and k-means
with kd-trees. Subsampling provided a slight reduc-
tion in sensitivity, while the use of kd-trees increased
algorithm sensitivity.

Although motivated by space applications, this work
also applies to any domain in which bit errors occur
while clustering. Removing the assumption of incor-
ruptible memory raises new reliability issues and opens
up new areas for machine learning innovation.

2. Background and Related Work

Radiation affects RAM by flipping individual bits.
This is referred to as a “single-event upset” or SEU.
The number of SEUs experienced depends on the ra-
diation environment and the physical configuration of
memory. The amount of radiation protection provided
by a component is characterized in terms of the SEUs
experienced in low-Earth orbit (LEO) (Johnson Space
Center, 1996):

SEUs per bit per day (LEO)
Commercial 10−5

Rad-tolerant 10−7 to 10−8

Rad-hard 10−10 to 10−12

Rad-hard SRAM has been developed that admits less
than 10−10 SEUs per bit-day (Hoang et al., 2007),
but it is typically 3–10 times more expensive than
commercial RAM. A common hardware technique for
achieving this protection is Triple-Modular Redun-
dancy (TMR), in which three identical components
perform the same memory operations and then vote on
the result (Lyons & Vanderkulk, 1962). Alternatively,
error detection and correction (EDAC) codes pro-
vide software-based protection, employing a “memory
scrubber” process to run continually in the background
to correct errors (Shirvani et al., 2000). Algorithm-
specific tests can be devised to detect SEU-induced
computational errors, although these assume error-free
data storage in memory (Turmon et al., 2003). It is
worth noting that these devices and techniques were

generally developed for use in Earth or Mars orbit; ra-
diation levels are even higher in orbit around planets
with strong magnetic fields such as Jupiter or Saturn.

Most prior work analyzing the sensitivity of k-means
has focused on its sensitivity to the choice of initial
starting point (Bradley & Fayyad, 1998; Peña et al.,
1999, etc.) or its sensitivity to noise in the data. The
latter has exclusively been studied for what we might
call “static” noise, which is present in the data prior to
clustering and does not change during analysis. This
kind of noise can be addressed empirically by assign-
ing density-based weights to decrease the influence of
(presumed noisy) outliers (Jolion & Rosenfeld, 1989)
or, if the type of noise is known (e.g., Gaussian mea-
surement error), it can be modeled as part of the clus-
tering process (Kumar & Patel, 2007).

The problem we study presents unique challenges be-
cause the noise introduced by SEUs is dynamic and
unpredictable. Further, SEUs affect not only the in-
put data but also any data structures that are created
and stored in memory. Finally, the magnitude of a
single SEU varies widely depending on the bit struck
and the data storage specification, e.g., 20 to 27 in a
simple 8-bit character case. For floating-point values,
the impact can be dramatically worse, especially if the
SEU strikes a bit in the exponent. On the other hand,
if SEUs strike bits that are not used, or that are up-
dated with correct values before their next read, the
algorithm may be able to withstand significant radia-
tion levels without a loss in accuracy. In this paper,
we investigate sensitivity quantitatively for k-means
clustering algorithms.

3. Radiation Sensitivity Analysis

This section presents the experimental methodology
we used to study radiation sensitivity, which can be
applied to any machine learning algorithm. It also
describes the different k-means methods we studied.

3.1. Methodology

We developed a software radiation simulator called
BITFLIPS (Basic Instrumentation Tool for Fault Lo-
calized Injection of Probabilistic SEUs) that is based
on the Valgrind debugging/profiling tool (Nethercote
& Seward, 2007). BITFLIPS monitors all data struc-
tures used and injects simulated SEUs (probabilisti-
cally) at a user-specified rate (in SEUs per kB per
second). It also allows the selective exposure of indi-
vidual data structures. SEUs are injected uniformly at
random; in reality, the physical layout of SRAM will
affect the distribution of hits.

K-means in Space: A Radiation Sensitivity Evaluation

This study focuses exclusively on the impact of SEUs
on memory used to store the data to be clustered and
memory consumed by data structures generated in the
process of clustering. We did not simulate SEUs in the
processor, registers, or code memory (generally much
smaller than secondary storage RAM).

We evaluated clustering performance using the Ad-
justed Rand Index or ARI (Hubert & Arabie, 1985),
which calculates the agreement of pairwise assign-
ments and normalizes for the expected value. An ARI
of 1.0 indicates perfect agreement, and an ARI of 0 is
that expected by random chance; it is negative for anti-
correlated partitions. Perturbing radiation destroys
any convergence guarantees, so we capped the number
of k-means iterations at 30, well above the maximum
number of iterations (11) needed for either data set.

3.2. K-means Algorithms

We implemented the basic k-means algorithm as well
as two variants designed to increase its efficiency in
different ways. K-means (Algorithm 1) takes in a data
set D containing n items and a user-specified number
of clusters k. It returns the list of clusters C, each
represented by its centroid. The clusters are initialized
by selecting k items randomly from D, and then the n
items are arbitrarily assigned to cluster 0. The main
loop of the algorithm alternates between two steps:
assign each item di to its closest cluster center (lines
9-12), and update each cluster centroid to be the mean
of its constituent items (lines 13-15). We used the
Euclidean distance metric. Iterations continue until
no item assignments change.

In assigning items to their closest clusters, k-means
greedily seeks a solution with minimal variance V from
items to their assigned cluster centers:

V =
1
n

n∑
i

dist(di, cai) (1)

where dist() is the same metric used in line 7 of Algo-
rithm 1, usually Euclidean.

Algorithm 1 K-means (MacQueen, 1967)
1: Inputs: data set D, number of clusters k
2: Outputs: clusters C = {cj , j = 1 . . . k}
3: Let n = |D|.
4: Initialize k clusters with randomly chosen d ∈ D.
5: Assign all items to cluster 0, ai = 0, i = 1 . . . n.
6: repeat
7: Assign each d ∈ D to its closest cluster in C.
8: Update each cluster cj as mean of {di|ai = j}.
9: until A does not change

Table 1. Vulnerability of k-means to radiation-induced
SEUs (single-event upsets), expressed in terms of individ-
ual data structures, including how much memory is ex-
posed and which lines of Algorithm 1 are affected.

Bytes of RAM Alg. 1 lines
exposed impacted

Assignments ai 4n 8, 9
Centers cj 4kf 7
Data di 4nf 4, 7, 8

Radiation Impact. The data structures used by k-
means are the assignments of items to clusters, the
cluster centers, and the data itself. Assuming 4-byte
data values (floats) and 4-byte cluster assignments
(ints), and letting f be the number of features, we can
calculate the amount of memory consumed by each
data structure (see Table 1). We also identify which
lines of Algorithm 1 depend on each data structure
(by reading the stored values). These are the loca-
tions where k-means is vulnerable to SEUs.

Since radiation is cumulative, an obvious question is
whether a more efficient version of k-means could tol-
erate higher radiation rates. We investigated two vari-
ants on the k-means algorithm that were designed to
speed up computation. Due to reduced runtime, they
should experience fewer SEUs at the same level of ra-
diation.

3.2.1. K-means with Subsampling

A simple approach to reducing runtime is to perform
an initial pass of k-means with a subsample of the data
set to obtain a set of approximate clusters Ĉ (Bradley
& Fayyad, 1998). Next, k-means is run on the entire
data set, initializing the clusters with Ĉ rather than
with randomly chosen items from the data set (see line
4 in Algorithm 1). No additional memory is required,
but both phases of k-means are subject to SEUs.

3.2.2. kd-k-means

It is possible to cluster more efficiently by building a
kd-tree over the data’s feature space and then travers-
ing that tree to assign clusters to groups of items at a
time (Alsabti et al., 1998; Kanungo et al., 1999; Pel-
leg & Moore, 1999). The binary kd-tree is a hierar-
chical data structure that starts with a cell covering
the entire data set and successively splits the feature
space into smaller cells. We refer to the tree node and
its associated feature-space cell interchangeably. By
specifying the maximum number of items contained in
a leaf, the size and granularity of the resulting tree can
be varied.

K-means in Space: A Radiation Sensitivity Evaluation

Algorithm 2 KD-filter (Kanungo et al., 2002)
1: Inputs: node t, candidate clusters C
2: if t is a leaf then
3: for d ∈ t do
4: Assign d to the closest c′ ∈ C.
5: Set c′n = c′n + 1 and c′LS = c′LS + d.
6: end for
7: else
8: Select the closest c′ ∈ C to the center of t’s cell.
9: for c ∈ C \ {c′} do

10: if isCloser(c′, c, t) then
11: Update C = C \ {c}. // Filter candidates
12: end if
13: end for
14: if |C| = 1 then
15: C = {c′}, so assign all d ∈ t to c′.
16: Set c′n = c′n + tn and c′LS = c′LS + tLS .
17: else
18: KD-filter(t.left, C) // Recurse left
19: KD-filter(t.right, C) // Recurse right
20: end if
21: end if

To split a cell, we selected the feature with the largest
span from minimum to maximum values within the
cell (Alsabti et al., 1998). We used the median value
as the splitting threshold θ (Pelleg & Moore, 1999),
assigning items with values ≤ θ to the “left” child and
items with larger values to the “right” child. Each
node in the kd-tree stores statistics sufficient to enable
k-means clustering: items in the cell, tn; the linear sum
of the items, tLS ; and the minimum tMIN,f and maxi-
mum tMAX,f values in each dimension. Each cluster c
is represented by the number of items it contains, cn,
and the linear sum of its constituents, cLS .

When clustering, the kd-tree is used to speed up a sin-
gle k-means iteration by recursively propagating a list
of cluster centers down the tree until a node is reached
in which all points can be assigned to a single clus-
ter. The main challenge in using a kd-tree effectively
is in how decisions are made to “filter” (Alsabti et al.,
1998; Kanungo et al., 1999; Kanungo et al., 2002) or
“blacklist” (Pelleg & Moore, 1999) the list of candidate
clusters at each node. We used the filtering algorithm
of Kanungo et al. (2002), shown in Algorithm 2. It
begins with a kd-tree node t and list of candidate clus-
ters C. If t is a leaf, a single greedy assignment pass is
done over all items in the leaf (lines 3-6). Otherwise,
the cluster closest to the center of the cell is selected as
the best candidate c′ and all other clusters are checked
for possible filtering (lines 9-13). The isCloser(c′, c, t)
function returns true if cluster c′ is closer than clus-

ter c to every point in cell t. If so, cluster c can be
removed from the list of candidates, since it is dom-
inated by cluster c′. The details of how to calculate
isCloser() efficiently, using tMIN,f and tMAX,f , are
provided by Kanungo et al. (2002).

Radiation Impact. Given a kd-tree T , we replace
lines 7-8 in Algorithm 1 with a call to KD-filter(T.root,
C). This approach has the potential to drastically de-
crease runtime, although it is less effective if dimen-
sionality is high (Pelleg & Moore, 1999). However, it
also increases the radiation exposure because the kd-
tree must be stored in memory. In our implementation,
each node of the kd-tree consumes 4 bytes to store tn
(an integer) and 3f 4-byte floats to store tLS , tMIN ,
and tMAX for f dimensions, for a total of 12f+4 bytes.
The number of nodes depends on the data distribution
in feature space and the maximum size of a leaf node.

As a practical note, we found that kd-k-means abso-
lutely required that tn be protected from radiation,
since this variable was used to loop over all points
within a node. When we later refer to exposing “the
kd-tree”, this includes only tLS , tMIN , and tMAX . We
also did not expose the algorithm while building the
kd-tree, only while clustering. Finally, to avoid seg-
mentation faults, we stored the kd-tree in a dynami-
cally resized array of nodes rather than using pointers.

4. Experimental Results

4.1. Benchmark: Iris Data Set

We first examine the impact of radiation when clus-
tering the Iris data set (Asuncion & Newman, 2007),
with n = 150 items, k = 3 classes (types of iris), and
f = 4 features (length and width of sepal and petal).
We chose this data set to due to its wide familiarity
and the known property that two of its three classes
are not linearly separable. Because of this property,
we do not expect k-means clustering to find the cor-
rect partition, which has a much higher variance than
the local optima to which k-means will be drawn.

4.1.1. Exposing All Data Structures

We tested regular k-means, k-means with subsam-
pling, and kd-k-means at a variety of radiation rates
(see Figure 1). As the radiation rate increased beyond
6.9 × 10−5, regular k-means accuracy dropped from
an average of 0.69 to 0.32 and then 0.01. However,
at the level of protection provided by simple commer-
cial RAM (1.0× 10−5), no impact to performance was
observed, even though SEUs were happening (up to
117 per run). Therefore, for clustering this data set,
radiation-hardened memory would be entirely unnec-

K-means in Space: A Radiation Sensitivity Evaluation

10
−6

10
−4

10
−2

10
0

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
om

m
er

ci
al

 R
A

M

Radiation rate (SEUs per bit per day)

A
cc

ur
ac

y
(A

dj
us

te
d

R
an

d
In

de
x)

Assignments
Centers
Data

(a) Regular k-means

10
−6

10
−4

10
−2

10
0

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
om

m
er

ci
al

 R
A

M

Radiation rate (SEUs per bit per day)

A
cc

ur
ac

y
(A

dj
us

te
d

R
an

d
In

de
x)

Assignments
Centers
Data

(b) K-means with 40% subsample

10
−6

10
−4

10
−2

10
0

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
om

m
er

ci
al

 R
A

M

Radiation rate (SEUs per bit per day)

A
cc

ur
ac

y
(A

dj
us

te
d

R
an

d
In

de
x)

Assignments
Centers
Data
Kd−tree

(c) Kd-k-means (leaf size = 1)

Figure 2. Radiation sensitivity of individual data structures used by k-means algorithms (Iris data set). Each curve is the
average over 40 trials, with bars showing one standard deviation.

10
−6

10
−4

10
−2

10
0

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
om

m
er

ci
al

 R
A

M

Radiation rate (SEUs per bit per day)

A
cc

ur
ac

y
(A

dj
us

te
d

R
an

d
In

de
x)

Sample=0.4
K−means
Kd−k−means

Figure 1. Radiation sensitivity of three k-means variants
for the Iris data set (n = 150, k = 3, f = 4). All data struc-
tures (data, assignments, cluster centers, and kd-trees)
were exposed to radiation. Each curve is the average over
100 trials, with bars showing one standard deviation. The
vertical bar shows the level of protection provided by com-
mercial RAM. Note log scale on the x axis.

essary in LEO. However, these results were obtained
on 3-GHz CPUs, much faster than any CPU used on-
board spacecraft. For example, the RAD750 runs at
133 MHz, an order of magnitude slower, so it would ex-
perience more SEUs due to a longer runtime. Scaled by
CPU speed, the estimated rate at which performance
would drop on a RAD750 would instead be 1.5×10−6,
which would likely require rad-tolerant (although not
rad-hard) RAM.

The other two algorithms both showed interesting be-
havior. Subsampling 40% of the data in the first clus-
tering pass provided a small increase in radiation tol-
erance at radiation levels exceeding 1.0×10−4 (similar

results were observed for subsamples from 10-50% of
the data).

Kd-k-means showed significantly more sensitivity to
radiation than the regular k-means algorithm. Any
reduction in runtime was offset by the increased mem-
ory consumption (and exposure). Kd-k-means also ex-
hibited a brief improvement in performance for SEU
rates between 1.1 × 10−3 and 7.1 × 10−2. While ini-
tially intriguing, this effect is spurious. At rates higher
than 1 × 10−4, the algorithm always reached the 30-
iteration cap and terminated with a partial solution.
Between 1×10−4 and 1×10−3, the algorithm assigned
all items to a single cluster, yielding an ARI of 0.0. Be-
tween 1× 10−3 and 7.1× 10−2, radiation effects were
felt in the cluster assignment values and most of the
items were assigned to non-existent clusters. Unlike
regular k-means and subsampling k-means, however,
some remaining information in the kd-tree permitted
this algorithm to assign a few items to valid clusters,
increasing the ARI above 0.0. For rates greater than
7.1×10−2, the algorithm had no items assigned to any
valid clusters (ARI = 0.0).

4.1.2. Exposing Single Data Structures

We also examined the sensitivity of individual data
structures used by each algorithm. Figure 2 shows per-
formance for k-means, subsampling, and kd-k-means
when either the item assignments, the cluster centers,
the input data, or the kd-tree (if used) was exposed
to radiation. Initially we might assume that sensi-
tivity increases with the amount of memory exposed.
Indeed, the most impact was observed when the in-
put data was exposed, which at 2400 bytes was the
largest component of memory consumption. However,
all three algorithms were least sensitive to exposure of
the item assignments (600 bytes); errors in the cluster
centers (48 bytes) had much more impact. Modifica-

K-means in Space: A Radiation Sensitivity Evaluation

tions to a cluster center can affect assignment decisions
for several items (Algorithm 1, line 7), while perturb-
ing an item assignment may have only minor impact
to a single cluster center (line 8). Here, subsampling
provided a slight, but not significant, increase in toler-
ance. For kd-k-means, exposing the kd-tree hurt per-
formance more than exposing the input data at lower
radiation levels, but had less impact at higher levels.

An interesting, and concerning, effect of using kd-trees
to cluster is revealed by comparing the individual “cen-
ters” curves. The curve in Figure 2(c) drops off much
more quickly than it does in Figure 2(a), indicating
that the use of a kd-tree in fact increases the sensi-
tivity of the algorithm to SEUs in the cluster centers,
even when the kd-tree itself is protected. Each itera-
tion of kd-k-means propagates the cluster centers down
through the kd-tree, and a perturbed cluster center
is likely to be filtered from the candidate list earlier
than it should be, at which point it will never be con-
sidered as a possible host for any item lower in the
tree. In contrast, regular k-means will at least con-
sider each possible cluster as a potential host for each
item, so small changes can be tolerated, and since the
cluster centers are recomputed at each iteration from
the (protected) data, those errors will be erased. In
effect, the efficiency advantage of kd-k-means, which
leverages geometric reasoning to reduce the number
of cluster-item associations to consider, increases its
sensitivity to radiation.

4.2. Satellite Multispectral Data

We are not aware of any application in which there is
a need to analyze the Iris data set in a high-radiation
environment. Therefore, we also experimented with
real data collected in Earth orbit. This data consists
of hyperspectral observations from the Hyperion in-
strument onboard the EO-1 Earth orbiter. Although
Hyperion observes at 242 wavelengths, onboard pro-
cessing can only be done on a (selectable) subset of up
to 12 bands (Castano et al., 2005). We extracted the
same 11 bands used by the onboard pixel SWIL (snow,
water, ice, and land) classifier described by Castano
et al. (2005). They range from 426 to 2284 nm, cov-
ering visible and near-IR wavelengths.

The data set we used was collected on October 3, 2002.
It covers part of the Quinghai Province in China and
includes clouds, cultivated land, and lakes. The origi-
nal image is very large (256 by 2904 pixels) and, while
it can be clustered in a reasonable amount of time in
regular operation, the additional overhead imposed by
BITFLIPS (tracking each exposed block of memory)
precluded us from analyzing it in simulation. Instead,

(a) RGB (b) Labels (c) K-means

Figure 3. Satellite image of Quinghai Province, China, ob-
served on October 3, 2002. (a) The 11-band data shown in
RGB. Clouds are on the left and right sides, with land and
a lake between them. (b) Manually assigned labels: bright
= cloudy and dark = clear. (c) Regular k-means clustering
output (using all 11 spectral bands, no radiation) achieves
0.940 agreement with the labels.

we focused on a small region within the image that
contains 1600 pixels, an order of magnitude more data
points than the Iris data set contains. The dimension-
ality is also higher, leading to a much larger memory
profile just to store the data (70,400 bytes). This re-
gion is shown in Figure 3(a) and contains all of the
elements of the larger image (cloud, land, and water).

Clustering satellite data is generally an unsupervised
process designed to summarize the data or identify ma-
jor components. However, we labeled the pixels in this
image to provide a reference against which to evalu-
ate the clustering results. We assigned each pixel to
one of two classes: cloudy and clear (see Figure 3(b)).
This is a relatively easy clustering problem for which
the regular k-means algorithm achieves 0.940 accuracy
(ARI), as shown in Figure 3(c).

4.2.1. Exposing Single Data Structures

Due to space limitations, we focus on the Quinghai
results obtained when exposing individual data struc-
tures (Figure 4). The behavior was similar to that
observed on the Iris data set, with some important
differences. Due to the larger data set and longer
run times, performance degraded for all algorithms at
lower radiation levels. Commercial RAM would no
longer provide sufficient protection for the input data,
even when analyzed by a 3-GHz processor. However,
radiation-tolerant RAM (ensuring a rate of less than
1× 10−7 to 10−8) would be sufficient protection when
using regular or subsampling k-means, even scaling
processing time down to a 133-MHz processor. Fur-
ther, the data assignments could safely be stored in
commercial RAM.

Unlike the experience with Iris, subsampling (10%) did
not improve radiation sensitivity (Figure 4(b)). Ac-
cording to Figure 4(c), kd-k-means definitely requires

K-means in Space: A Radiation Sensitivity Evaluation

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
om

m
er

ci
al

 R
A

M

Radiation rate (SEUs per bit per day)

A
cc

ur
ac

y
(A

dj
us

te
d

R
an

d
In

de
x)

Assignments
Centers
Data

(a) Regular k-means

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
om

m
er

ci
al

 R
A

M

Radiation rate (SEUs per bit per day)

A
cc

ur
ac

y
(A

dj
us

te
d

R
an

d
In

de
x)

Assignments
Centers
Data

(b) K-means with 10% subsample

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
om

m
er

ci
al

 R
A

M

Radiation rate (SEUs per bit per day)

A
cc

ur
ac

y
(A

dj
us

te
d

R
an

d
In

de
x)

Assignments
Centers
Data
Kd−tree

(c) Kd-k-means (leaf size = 100)

Figure 4. Radiation sensitivity of individual data structures used by k-means algorithms (Quinghai Province data set).
Each curve is the average over 10 trials, with bars showing one standard deviation.

rad-tolerant memory for the kd-tree and input data.
The other components could be stored in commercial
RAM, at some risk of errors. On a 133-MHz processor,
all data structures should be stored in rad-tolerant or
even rad-hard memory.

Because this is image data, we can gain additional in-
sights by visually browsing the output partitions. Fig-
ure 5(b) shows a superior result achieved only in the
presence of radiation, with an ARI of 0.946 (radia-
tion rate 1.3 × 10−6). This solution, which provides
a better match to the labels, has a higher variance
(3.061 × 106) than that of the solution consistently
found by k-means without radiation (3.058× 106) and
therefore could only be reached with outside influence.
In this case, it was achieved by the k-means algorithm
running with the item assignments exposed.

Figure 5(c) shows another result obtained by k-means
with assignments exposed, at a higher radiation rate
(6.7×10−4). This solution does not match the labels at
all, and in fact is anti-correlated with them, yielding an
ARI of -0.102. However, visual inspection of the data
indicates that this result is not random incoherence.
The small cluster is associated with the lake instead
of the clouds. This result has extremely high variance
(1.321 × 107) and almost certainly would never have
been found by regular k-means.

5. Conclusions and Future Work

We have conducted the first quantitative analysis of
radiation sensitivity for the k-means clustering algo-
rithm. The same process can be applied to quan-
tify the radiation sensitivity of any machine learn-
ing algorithm. Given relevant data and knowledge
about the rate of radiation in the target environ-
ment, we can estimate the amount of radiation pro-
tection needed. Specifically, we have focused on

(a) RGB (b) ARI 0.946 (c) ARI -0.102

Figure 5. Radiation-perturbed clustering output for
Quinghai Province. (a) Original data. (b) A solution
superior to any found by k-means without radiation. (c) A
“poor” solution with a reasonable physical interpretation.

the impact of radiation-induced single-event upsets
(SEUs) which flip individual bits in RAM. We have
observed, in benchmark and satellite data sets, that
there is a threshold radiation rate below which, al-
though SEUs are happening, the clustering results are
not affected. If this threshold is high enough (1×10−5

SEUs/bit/day), regular commercial RAM could be
used in space without any impact to performance.

Using the BITFLIPS software radiation simulator, we
tested k-means and two variants designed to decrease
runtime, to determine whether they could also de-
crease sensitivity. Subsampling to generate better ini-
tial cluster centers provided a small benefit on the Iris
data set. In contrast, k-means using a kd-tree to speed
up clustering increased the algorithm’s sensitivity on
both data sets, especially if the cluster centers were
exposed. We also found that the sensitivity of indi-
vidual components (assignments, centers, and input
data) differed greatly, reflecting how they were used
by the algorithm rather than strictly depending on the
amount of memory exposed.

We have only scratched the surface of this domain.
There are many other k-means variants available for
consideration as onboard clustering algorithms. A

K-means in Space: A Radiation Sensitivity Evaluation

clear next step is to quantify the sensitivity of su-
pervised learning methods such as support vector ma-
chines, which are already in use in Earth orbit (Cas-
tano et al., 2005). Further, we would like to issue a
challenge to the community to develop k-means clus-
tering algorithms that specifically aim for reduced
radiation sensitivity. It is possible that careful re-
ordering of actions could reduce the impact of SEUs.
Pairwise constraints or other domain knowledge could
potentially be used to reduce sensitivity, although that
information, too, would be subject to radiation. Ul-
timately, we seek “rad-hard” machine learning algo-
rithms that perform robustly in extreme environments.

Acknowledgments

We thank the anonymous reviewers for their thought-
ful, very useful suggestions. Our experiments used the
JPL Supercomputing Facility, which is funded by the
JPL Office of the Chief Information Officer. This work
was carried out at the Jet Propulsion Laboratory, Cal-
ifornia Institute of Technology, under a contract with
the National Aeronautics and Space Administration.
c© 2009, California Institute of Technology.

References

Alsabti, K., Ranka, S., & Singh, V. (1998). An efficient
k-means clustering algorithm. Proceedings of the 1st
Workshop on High Performance Data Mining.

Asuncion, A., & Newman, D. (2007). UCI ma-
chine learning repository. http://www.ics.uci.
edu/∼mlearn/MLRepository.html.

Bradley, P. S., & Fayyad, U. M. (1998). Refining ini-
tial points for k-means clustering. Proceedings of
the Fifteenth International Conference on Machine
Learning (pp. 91–99).

Castano, R., Mazzoni, D., Tang, N., Doggett, T.,
Chien, S., Greeley, R., Cichy, B., & Davies, A.
(2005). Learning classifiers for science event detec-
tion in remote sensing imagery. Proceedings of the
Eighth International Symposium on Artificial Intel-
ligence, Robotics, and Automation in Space.

Hoang, T., Ross, J., Doyle, S., Rea, D., CHan, E.,
Neiderer, W., & Bumgarner, A. (2007). A radiation
hardened 16-Mb SRAM for space applications. Proc.
of the IEEE Aerospace Conference (pp. 1–6).

Hubert, L., & Arabie, P. (1985). Comparing partitions.
Journal of Classification, 2, 193–218.

Johnson Space Center (1996). Space radiation effects
on electronic components in low-Earth orbit. NASA

Reliability Practice No. PD-ED-1258, http://www.
nasa.gov/offices/oce/llis/0824.html.

Jolion, J.-M., & Rosenfeld, A. (1989). Cluster detec-
tion in background noise. Pattern Recognition, 22,
603–607.

Kanungo, T., Mount, D. M., Netanyahu, N. S., Pi-
atko, C., Silverman, R., & Wu, A. Y. (1999).
Computing nearest neighbors for moving points
and applications to clustering. Proceedings of the
Tenth ACM-SIAM Symposium on Discrete Algo-
rithms (pp. S931–S932).

Kanungo, T., Mount, D. M., Netanyahu, N. S., Pi-
atko, C. D., Silverman, R., & Wu, A. Y. (2002).
An efficient k-means clustering algorithm: Analysis
and implementation. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 24, 881–892.

Kumar, M., & Patel, N. R. (2007). Clustering data
with measurement errors. Computational Statistics
and Data Analysis, 51, 6084–6101.

Lyons, R. E., & Vanderkulk, W. (1962). The use of
triple-modular redundancy to improve computer re-
liability. IBM Journal, 200–209.

MacQueen, J. B. (1967). Some methods for classifica-
tion and analysis of multivariate observations. Pro-
ceedings of the Fifth Symposium on Math, Statistics,
and Probability (pp. 281–297).

Nethercote, N., & Seward, J. (2007). Valgrind: A
framework for heavyweight dynamic binary instru-
mentation. Proceedings of the ACM SIGPLAN Con-
ference on Programming Language Design and Im-
plementation (pp. 89–100).

Peña, J. M., Lozano, J. A., & Larrañaga, P. (1999).
An empirical comparison of four initialization meth-
ods for the k-means algorithm. Pattern Recognition
Letters, 20, 1027–1040.

Pelleg, D., & Moore, A. (1999). Accelerating exact
k-means algorithms with geometric reasoning. Pro-
ceedings of the Fifth International Conference on
Knowledge Discovery in Databases (pp. 277–281).

Shirvani, P. P., Saxena, N. R., & McCluskey, E. J.
(2000). Software-implemented EDAC protection
against SEUs. IEEE Transactions on Reliability, 49,
273–284.

Turmon, M., Granat, R., Katz, D., & Lou, J. (2003).
Tests and tolerances for high-performance software-
implemented fault detection. IEEE Transactions on
Computers, 52, 579–591.

