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Multispectral and hyperspectral imagers are now com-
monly used to obtain remote sensing measurements for the
study of Mars, and many more such measurements are planned
for the future. These techniques present a number of data
collection, processing, and analysis challenges for planetary
scientists. For example, CRISM, the spectrometer that will fly
on Mars Reconnaissance Orbiter in 2005, is expected to return
about 9 terabytes of data over the mission duration. Each mul-
tispectral map will be 5120x5120 pixels in size (25 MB). It is
not obvious how to easily browse this data, much less perform
detailed analyses of it. More data means more information and
the opportunity for new insights about Mars, but it carries with
it a heavier and heavier burden for the analysis process.

Conventional methods for analyzing multispectral data in-
clude techniques such as examining absorption band depths at
specific wavelengths or plotting two-dimensional histograms
of radiance at different wavelengths. Selecting wavelengths
and band depths that will yield the most compositional or min-
eralogical insight requires a significant amount of expertise
about the object being observed. More critically, the process
can be very time-consuming, with each histogram providing
a single two-dimensional slice of the data for interpretation.
For spectral data with only 10 wavelengths, there are 900
such histograms. Instruments such as the HST Space Tele-
scope Imaging Spectrograph (STIS) have observed Mars at
1024 wavelengths; there are 1,047,552 corresponding possi-
ble histograms. This is not an upper limit, however; there
are several other histograms that can provide insights, such as
plotting radiance at one wavelength against the radiance ratio
at two other wavelengths, or plotting radiance against a band
depth or slope feature.

Of course, not every pair of features will yield interesting
results when plotted against each other. Often areas of interest
are already known, such as the 900 nm band depth or the
radiance at 440 or 750 nm for Mars observations. However, our
knowledge of Mars is certainly not comprehensive. The ability
to discover additional informative relationships is critical.

In this abstract, we describe the result of applying an au-
tomated clustering algorithm to two data sets composed of
Mars observations. One data set was collected by STIS on the
Hubble Space Telescope; the other was obtained by the Mars
Pathfinder Lander. We find that the results are comprehensible
and, when a manual analysis is available for comparison, there
is a good amount of agreement between the two sets of results.
The automated analysis, however, requires significantly less
time to produce results.

Hubble Space Telescope STIS Data. We first introduce
the STIS data set. These observations were collected by a
spectrograph on HST at several different wavelengths (Bell III
et al., 2001). The observing period was from April to May
of 1999, corresponding to the middle of northern summer on
Mars. Consequently, the quality of the observations of the
northern part of the planet is high, while the southern latitudes
have poorer coverage. Each map is composed of 360 × 180

Figure 1: Global map of Mars, observed at 907 nm from Earth
orbit by an imaging spectrograph on the Hubble Space Tele-
scope. The image is in a Mollweide equal-area map projection.

pixels; the goal is to partition the pixels into coherent regional
clusters on Mars. Figure 1 shows all of the pixels at a spe-
cific wavelength, 907 nm. Brighter areas correspond to higher
intensity. The black striping and missing data regions are
artifacts of the scanning method used by the spectrograph. Ex-
cluding missing data and pixels that fall outside the map, each
image is composed of 47,221 pixels. Each pixel is described
by 26 features, corresponding to the pixel’s intensity at each
of 26 different wavelengths, 528–1016 nm, selected from the
original 1024.

We applied the k-means clustering algorithm to this data.
K-means (MacQueen, 1967) takes as input a data set and the
number of desired clusters, k. It produces a partition of the
data set into k clusters such that items inside a cluster are very
similar and distinct from items in other clusters. Each clus-
ter is represented by its mean, or centroid. For multispectral
analysis, the center of a cluster is a spectrum composed of the
mean values for each of the wavelengths.

Figure 2 shows the result of partitioning the STIS data into
seven clusters. Most of the clusters vary only in their albedo;
their general spectral shapes are similar. Two noteworthy ex-
ceptions are the green and grey clusters. The green cluster is

Figure 2: Results of k-means clustering with k = 7. Each
color represents a spectral class that was determined by the
algorithm to be spectrally unique. Many of the classes follow
the classical albedo boundaries.
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composed of very dark and flat spectra. It occurs in the south-
ern regions of the data set, where observing conditions were
poor (near the limb, and thus artificially darkened), near the
north polar cap, and in an isolated spot that turns out to corre-
spond to Syrtis Major. The southern regions can be considered
an artifact of the data collection process. The north polar spots
are likely to be dark soils and/or bedrock exposed by the retreat
of the north polar cap, due to the time of year. Syrtis Major
has been consistently identified as an unusually dark region on
Mars; see e.g., McCord et al. (1971).

The other exceptional cluster is represented by grey in
Figure 2. It occurs at the north pole and in a round region near
the southern part of the planet. The average spectrum for this
cluster is also unusually flat spectrum, but it differs from the
green cluster in that it is much brighter (reflectance about 0.12
versus 0.08 for the green cluster). It does not exhibit the typical
Martian spectral qualities of low blue and high red reflectance.
We hypothesize that this cluster represents ice and/or clouds
observed on the planet, and the physical location of the grey
pixels bears this out. The north pole is a likely place to find ice,
and the southern region corresponds directly to Hellas Crater,
where thin clouds may form.

In both of these cases, the areas of interest highlighted by
the analysis do not necessarily provide new knowledge about
Mars. However, even at the coarse resolution provided by
this data set, the results we obtain are consistent with previous
knowledge about the planet. This provides support for using
such methods on other Mars data sets, where less existing
knowledge may be available.

MPF Lander Data. The Imager for the Mars Pathfinder
Lander obtained a series of 12-color multispectral images dur-
ing the lander’s mission in 1997. A subset of these images,
focusing primarily on soil deposits, has been analyzed by Bell
et al. (2000) using manual and histogram-based classification
methods. Figure 3 shows the 58 multispectral spot images at
600 nm. Bell et al. identified eight distinct soil and dust units:
“Bright I-IV”, “Surface dust”, “Atmospheric dust”, “Dark”,
and “Disturbed” (disturbed soil occurs in regions where the
rover’s wheels traveled). We also applied the k-means clus-
tering algorithm to this data set, specifying eight clusters, as
suggested by Bell et al. The resulting classification of the spot
data is shown in Figure 4, where each cluster is represented by
a different color. For the following discussion, we will refer to
the k-means clusters by their color, and the clusters obtained
by Bell et al. by the above descriptions.

The average cluster spectrum for each class is shown in
Figure 5. They are color-coded to match the colors used in
Figure 4. There are several interesting similarities to the clus-
ters manually identified by Bell et al. The red and purple
clusters correspond well to the “Dark” and “Disturbed” soil
units. For both clusters, R750 is less than 0.2, matching the
condition specified by Bell et al. The two soil types are distin-
guished in Bell et al.’s analysis by their R440 and 900 nm band
depth values. “Dark” soil units have R440 > 0.035, while
“Disturbed” soil has R440 < 0.035. We do not observe these
exact values, but the 900 nm band depth for the red cluster is
twice as large (0.06) as that for the purple cluster.

The orange cluster obtained by k-means corresponds well
to the unit identified as atmospheric dust by Bell et al. In

both analyses, it occurs in sky areas of the spot images. In
our results, it also occurs on the top of a rock (spot 16). It is
characterized by a high blue reflectance and a low red/blue ratio
(i.e., the spectrum is relatively flat compared to other areas).
In our analysis, this cluster is also distinguished from the other
clusters due to its negative band depth at 900 nm. Every other
cluster has either a negligible or a positive band depth at this
wavelength. We also found that our cluster covers 7% of the
pixels, while the atmospheric dust identified by Bell et al. only
covers 4%. We hypothesize that some “Bright III” units may
be included in this cluster, as they are generally characterized
by a negative 900 nm band depth.

The remaining clusters are all composed of relatively bright
material. They probably correspond to a collection of the
“Bright I”, “Bright II”, “Bright IV”, and “Surface Dust” clus-
ters. We have not yet matched them more closely with each
type. The distinctions identified by Bell et al. between these
types depend on the 800–1000 nm slope and the 900 nm ab-
sorption band depth. Calculating these values over the cluster
representative spectra did not sufficiently distinguish them; for
example, all of the calculated 800–1000 nm slopes were be-
tween −0.00011 and −0.00010. We believe that calculating
these values on individual spectra and then looking at the range
of values for each cluster may yield more insight.

Figure 5: Average spectra for each of the eight clusters identi-
fied in Figure 4.

The analysis results we have obtained on this data set via an
automated method are largely consistent to the results obtained
by a manual analysis. This correspondence lends support to
using automated methods to provide a “first pass” analysis of
a data set.

Conclusions. Automated data analysis provide a means
for handling the massive data volumes that planetary scien-
tists increasingly face. By identifying distinct sub-groups in
a data set, they highlight both overall trends and interesting
exceptions. The speed of automated methods can save time
devoted to preliminary investigations and make the analysis of
terabyte-scale data sets feasible.
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Figure 3: MSS soils and dust composite (combined left and right eye) mosaic of the 58 multispectral spots (each 64x64 pixels).
The greyscale image shows intensity at 600 nm. Dark areas are regions where rocks, shade, and parts of the spacecraft have been
masked out. Spots are numbered 1–58, starting at the top left and proceeding left to right.

Figure 4: Automated classification of the MSS data into eight distinct spectral types.


