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Introduction: The Europa Clipper mission [1],
scheduled to launch in 2023, will conduct 40+ flybys
of Jupiter’s moon Europa and collect observations using
nine instruments. Each flyby is likely to reveal new dis-
coveries about Europa that will increase our understand-
ing of the subsurface ocean and influence future mission
plans. Due to the distance between Europa and Earth,
Clipper will be downlink-limited: the instruments have
the ability to collect more data than can be transmitted.
Traditional mission planning operations will tailor each
flyby’s data collection activities to fit the available re-
sources (time, power, and downlink). We are exploring
software advances that would enable Clipper to collect
additional data, analyze it onboard to assign downlink
priorities, and potentially increase science return without
increasing downlink consumption.

Spacecraft onboard data analysis: Severalmissions
have demonstrated the ability to analyze data in situ and
make decisions about downlink priorities and follow-up
observations. The EO-1 spacecraft in Earth orbit ana-
lyzed hyperspectral data from the Hyperion instrument
to detect floods and volcanic eruptions [2], detect sur-
face sulfur deposits (a potential Europa analogue biosig-
nature) [3], and assess image quality in terms of cloud
cover to optimize downlink [4]. The IPEX CubeSat,
also in Earth orbit, used machine learning to generate
image classification maps as low-bandwidth summary
products and detect regions of high visual interest for pri-
ority downlink [5]. The Mars Science Laboratory rover
uses onboard image analysis to select targets in Navcam
images and collect new observations of those targets au-
tonomously with the ChemCam laser spectrometer [6].

Clipper has several instruments that can potentially
benefit from onboard analysis as the data is collected. We
developed a method for detecting thermal anomalies (hot
spots) in data collected by the E-THEMIS thermal im-
ager [7]. Hot spots could indicate subsurface upwelling
or processes related to plume activity. In this work, we
focus on analysis of data collected by the Mapping Imag-
ing Spectrometer for Europa (MISE) [8], which generates
a much higher data volume and therefore could benefit
even more from onboard analysis and prioritization of
data.

Spectral anomaly detection: The presence of spe-
cificminerals, including hydrated salts and sulfates, are of
great interest on Europa. Specific patternmatching detec-
tors can be employed to detect and prioritize those obser-
vationswithinMISEdata. Yet in allmissions designed for
the exploration of new environments and worlds, perhaps
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Figure 1: Spectral anomaly found in Galileo NIMS data set
14e006ci (14ENSUCOMP01A) of Argadnel Regio using the
DEMUD algorithm. (a) Explanation for why this pixel was
considered anomalous, (b) Spatial plot with anomalous pixel
marked with red x, (c) Abundance heatmap showing locations
of similar pixels.

the greatest value comes from detecting the unexpected.
We employ anomaly detection methods to identify sur-
face areas with unusual composition.

We explored two anomaly detection methods. The
Reed-Xiaoli (RX) method [9] assigns an anomaly score
A to each pixel x that captures its deviation from the
“background” or typical signals in the data set:

ARX(x) = (x− µ)T Σ−1(x− µ), (1)

where µ is the mean across all pixels and Σ is the co-
variance matrix. The DEMUD method [10] iteratively
models pixels as they are selected using the top k com-
ponents of a Singular Value Decomposition (SVD) of
the pixels and assigns an anomaly score to the remaining
pixels based on their reconstruction error:

AD(x) = ||x− (UUT (x− µ) + µ)||2, (2)

where U contains the k principal components and
UUT (x− µ) + µ is the reconstruction of x using U .
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DEMUD is unique amongst anomaly detection meth-
ods in that it also provides an explanation for its selections
by highlighting which features cause the greatest recon-
struction error (i.e., which feature values could not be
well modeled by previous observations). For example, it
has been used to detect and explain unusual mineralogy
in MSL ChemCam observations [11].

Results with NIMS data: SinceMISEdata do not yet
exist, we tested these algorithms on Europa data from the
Galileo Near-Infrared Mapping Spectrometer (NIMS).
NIMS observed at 0.7 − 5.2 µm, versus 0.8 − 5.0 µm
for MISE. Figure 1 shows an example spectral anomaly
identified by the DEMUD algorithm in NIMS data (red
x in Figure 1(b)). Figure 1(a) shows DEMUD’s model
prediction (red) and the observed data (blue). Wave-
lengths where the two spectra diverge are diagnostic for
this pixel. Figure 1(c) shows an abundance heatmap in
which red areas are similar to the selected pixel and blue
areas are dissimilar. As DEMUD iterates, it also finds
and flags data with quality issues, such as the vertical
stripe to the left of the middle of the region. Careful re-
view of each outlier enables the determination of whether
it is of scientific interest or an artifact. We are currently
applying these methods to a larger collection of NIMS
Europa observations, which could yield new insights to
inform mission planning for Clipper.

We also conducted controlled sensitivity experiments
in which we artificially perturbed a randomly selected
NIMS pixel and evaluated whether the modified pixel
was detected. We perturbed the pixel x by linearly
mixing it with the spectrum s for a mineral of interest
from the USGS NIMS spectral library [12], which cov-
ers 0.2 − 3.0 µm: x̂ = fs + (1 − f)x, where f is the
anomaly fraction. Figure 2 shows the novelty detection
rank (i.e., speed with which a given perturbed pixel is
discovered), for NIMS data set 14e002ci. Discoverabil-
ity increases as the perturbed pixel is more anomalous.
A supervised method that is trained to detect the mineral
of interest using a matched filter (“MF”) provides an up-
per bound on anomaly-based discoverability. We found
that RX and DEMUD detected the perturbed pixels at
about the same rate (e.g., within 10 − 50 selections for
an anomaly fraction of 0.5). These results provide infor-
mation about how easy or difficult it would be to detect a
given mineral on Europa (e.g., bloedite is easier to detect
than epsomite); discoverability varies since some miner-
als are inherently more similar or different to Europa’s
composition.

Discussion: Our ground-based experiments with
NIMS observations of Europa provide a proof of con-
cept for spectral anomaly detection methods that could
be employed for the autonomous analysis of MISE data.
This analysis could be done onboard the spacecraft to
help prioritize data for downlink (e.g., observations with

Figure 2: Discoverability for artificially perturbed pixels in
GalileoNIMSdata set 14e002ci. The perturbed pixelwasmixed
with library spectra for bloedite (top) or epsomite (bottom).
“MF” is a matched filter trained to detect the specified mineral.

a high anomaly score could receive high priorities, or re-
gions around an anomaly could be cropped to generate a
smaller product that focuses on an area of high interest).
It could also be used on the ground to direct attention
to small areas with anomalous composition that merit
deeper investigation.
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