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Abstract

Staying up to date with the latest discoveries is a chal-
lenge in any scientific field. In planetary science, new
observation targets on the surface of Mars are identified
and named every day, and new publications announcing
new discoveries and conclusions provide frequent up-
dates about these targets. We are constructing a system
that uses information extraction and retrieval methods
to mine the steadily growing body of planetary science
publications about Mars surface targets and automati-
cally construct a concise summary of what is known
about each target. The Mars Target Encyclopedia will
provide a central, continually updated resource for use
by planetary scientists and the interested public. We
describe our use of Tika, Sundance, and AutoSlog to
extract and summarize information, some of the chal-
lenges associated with this domain, and our plans for
maturing the system.

1 Introduction and Motivation
The rovers that have been sent to Mars have been extraor-
dinarily active and productive. The Mars Science Labora-
tory rover has generated > 3500 observation targets in three
years, and the Mars Exploration Rover Opportunity has gen-
erated even more over its 11+-year mission. There are hun-
dreds of associated scientific publications reporting new dis-
coveries. The downside of this productivity is that as the
number of data and publications grow, it becomes nearly im-
possible for any single person to read, understand, organize,
and recollect the amount of information available.

We focus on a specific challenge, which is that of staying
up-to-date with everything known (published) about identi-
fied surface targets on Mars. Each time an instrument (cam-
era, spectrometer, laser, etc.) is aimed at a target (soil, rock,
formation, etc.), that target is given a unique name. Mission
planners and planetary science researchers must be aware
of an increasing number of names, locations, and facts so

Copyright c© 2016, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

First observed: October 19, 2012
MSL Sol 72, Site: 5
Soil target

Observations
Sol 72 - ChemCam, Remote Micro-Imager

Properties
high Ca phases were observed [Clegg et al., 2013]
contains F [Forni et al., 2014a; 2014b; Forni et al., 2015]

More like this
Epworth_3
Black Rock (CaF2)

Publications
Clegg et al. (2013), "High calcium phase observations at Rocknest with ChemCam," LPSC

Forni et al. (2014a), "First fluorine detection on Mars with ChemCam on-board MSL," LPSC

Forni et al. (2014b), "First fluorine and chlorine detection with ChemCam on-board MSL," 
8th International Conference on Mars

Forni et al. (2015), "First detection of fluorine on Mars: Implications for Gale crater's 
chemistry," Geophysical Research Letters

Epworth

"Epworth-5 contains a relative large amount of fluorine since the main atomic lines of F I are also 
observed."

"Specifically, these high calcium phases were observed on Pearson (sol 60), Epworth (a soil on 
sol 72) and Rocknest_6a (sol 87)."

Other targets mentioned: Crest, Goulburn, Link, Measles Point, Pearson

Figure 1: Example hand-constructed MTE entry for target
Epworth. Users can connect to the original observations,
properties that were extracted from scientific publications,
and the publications themselves. Each publication provides
excerpts with relevant context and a list of other targets men-
tioned.

that new observations can be appropriately interpreted in the
context of what is already known. For example, one might
ask: Does the observation of high manganese content at a
particular location represent a confirmation of an existing
trend or an anomalous new discovery?

Current text search tools cannot meet the knowledge
needs of planetary scientists and mission planners. Mars sur-
face target names have no naming convention, and names
are often borrowed from Earth locations (e.g., “Cumber-
land,” “Ithaca”), people (e.g., “Jake”, “Darwin”), or apparent



whimsy (“Frood,” “Worldbeater”). Using Google or journal
text search interfaces with these names yields many irrele-
vant results. This situation presents an opportunity for NLP
and information extraction (IE) and retrieval (IR) methods
to make a major contribution that can help advance the field
of planetary science. The number of targets, amount of data,
and number of associated publications are too large for a
manual solution to be feasible. This task also presents im-
portant challenges that can motivate advances in IE that can
benefit other domains.

We are working to construct a Mars Target Encyclope-
dia (MTE) that will contain knowledge about Mars surface
targets. The MTE will provide access to the data and publi-
cations associated with each target (see Figure 1 for a hand-
constructed example). Each entry will also include a list of
properties that were automatically extracted from the publi-
cations, providing a high-level summary of relevant knowl-
edge. The associated excerpts will be highlighted for each
publication, serving to (1) provide support for each of the
extracted properties and (2) enable users to quickly deter-
mine which papers are of the most interest.

The MTE project is in an early stage. In this paper, we re-
port on the motivation, concept, approach, and early results
that we have obtained. We also discuss the associated chal-
lenges that are of interest to the NLP and IR communities,
and we describe the next steps that we will pursue.

2 Constructing a Mars Target Encyclopedia

2.1 Data Set Description

For our initial study, we constructed a corpus that consists of
all papers presented at the 2015 Lunar and Planetary Science
Conference (LPSC)1. Each of the 1,991 papers is a maxi-
mum two-page extended abstract with a common structure:
title, authors with affiliations, a two-column main body that
may contain figures and/or tables, and references. The lan-
guage is academic and makes heavy use of complex noun
phrases and parenthetical expressions. The passive voice is
often used.

We used the Apache Tika parser (Mattmann and Zitting
2011) to read the PDF files and convert them to plain text.
Four documents could not be parsed by Tika, yielding 1,987
documents. The number of extracted words per document
ranged from 142 to 2433.

We also obtained a seed list of Mars surface target names
identified by the ChemCam science team. ChemCam is an
instrument on the Mars Science Laboratory (MSL) rover. It
fires a laser at rock or soil targets and then uses a spectrome-
ter to record the emitted energy at 6,144 wavelengths (Mau-
rice and others 2012). The current list of all ChemCam ob-
servations can be obtained online2. The version we used con-
tained 16,267 observations that spanned 656 distinct targets.

AutoSlog	  

Publica(ons	  
Rocks	  +	  
Minerals	  

MARS	  
Surface	  
Targets	  

Chemical	  
Elements	  +	  
Compounds	  

Target	  Pa?erns 	  Chemical	  Pa?erns 	  Rock/Mineral	  Pa?erns	  
	  
<target>	  contains 	  contains	  <chemical> 	  is	  enriched	  in	  <rock>	  
<target>	  shows	  evidence 	  evidence	  for	  <chemical> 	  <rock>	  was	  found	  
analysis	  of	  <target> 	  characterized	  by	  <chemical> 	  presence	  of	  <rock>	  

Figure 2: The extraction pattern generation process. Au-
toSlog learns patterns from publications and lists of target
names, chemical elements and compounds, rocks, and min-
erals.

2.2 Information Extraction Approach
The planetary science literature is large, providing us with an
abundance of text for this domain. However, annotated texts
are not readily available, and obtaining human annotations
from planetary science experts would be time-consuming
and expensive. Our goal is to design an information extrac-
tion (IE) process that uses weakly supervised learning meth-
ods to extract knowledge from planetary science articles.

Figure 2 depicts the first step in our information extraction
process. As input, we provide a text corpus of publications
along with lists of terms for relevant semantic categories,
such as ChemCam Mars surface target names, chemical el-
ements/compounds, and rocks/minerals. The AutoSlog ex-
traction pattern generator (Riloff 1993; 1996) is applied to
each list, producing a set of lexico-syntactic patterns asso-
ciated with the corresponding semantic category. AutoSlog
is a weakly supervised pattern learner that uses heuristic
rules and coarse statistics, without requiring annotated docu-
ments. The learned patterns can then be applied to new texts,
to extract information that we will store in the MTE.

The AutoSlog software package includes the Sundance
shallow parser and information extraction engine (Riloff and
Phillips 2004), which applies the lexico-syntactic patterns
generated by AutoSlog. The Sundance parser performs to-
kenization, sentence segmentation, morphological analysis,
part-of-speech disambiguation, syntactic chunking, syntac-
tic role assignment, and clause segmentation. Although it
was originally designed to process news articles, Sundance
has also been successfully applied to scientific publications

1Downloaded from http://www.hou.usra.edu/
meetings/lpsc2015/

2http://pds-geosciences.wustl.edu/msl/
msl-m-chemcam-libs-4_5-rdr-v1/mslccm_1xxx/
document/msl_ccam_obs.csv



from the biomedical literature (Ramakrishnan et al. 2010;
Pokkunuri et al. 2011). A key attribute of Sundance is that
its dictionaries and data files are easily customizable for spe-
cialized domains, which has allowed us to tailor it for plan-
etary science texts. Our domain-specific customizations in-
clude (1) the specification of two words that, despite end-
ing in a period, do not indicate the end of a sentence (“Mt.”
and “wt.”) and (2) domain-specific vocabulary including el-
ement names (e.g., “chlorine”, “Cl”), mineral names (e.g.,
“akaganeite”, “feldspar”, “MnO”), target names (from the
list described above), and unusual terms (e.g., “sol” (Mar-
tian day), “MSL”).

2.3 Illustrative Results
In this section, we provide example results for extracting in-
formation for a Mars surface target named Windjana. Wind-
jana is a sandstone that was named after the Windjana Gorge
in Western Australia (Anderson, Beegle, and Abbey 2015).

Consider the following four sentences, taken from differ-
ent documents, and the extraction patterns generated by Au-
toSlog using the target, chemical, and mineral lists:

1: “Windjana is remarkable in containing an abundance
of potassium feldspar (and thus K in its bulk chemistry) com-
bined with a low abundance of plagioclase (and low Na/K
in its chemistry).”

Target: <subj> CONTAINING ABUNDANCE
Mineral: ABUNDANCE OF <np>

2: “The high abundances of K-feldspar and iron oxides in
Windjana, also reflected in the APXS chemical analysis as
high K and Fe (Table 2) [7], are unusual.”

Mineral: ABUNDANCE OF <np>
Target: OXIDES IN <subj>

3: “The Windjana sandstone contains high magnetite
along with 2:1 phyllosilicates [9].”

Target/Mineral: <subj> CONTAINS MAGNETITE
4: “The abundance of K-spar and the potential pres-

ence of illite in Windjana must be considered when inter-
preting the formation of the Dillinger sandstone because
these phases can form in diagenetic K-rich environments on
Earth.”

Mineral: ABUNDANCE OF <np>
Target/Mineral: ILLITE IN <np>

If we synthesize all the information found in these sen-
tences by the patterns, we can produce a summary of known
properties about Windjana:

Target Windjana
Properties:
- contains abundance of potassium feldspar
- high abundances of K-feldspar and iron oxides
- contains high magnetite
- contains illite

The synthesis was done manually in this example, and
we plan to develop methods for merging the information ex-
tracted from different patterns automatically.

This summary compiles knowledge extracted from multi-
ple papers. While each author team might choose to focus on
different aspects in their individual papers, information ex-
traction from the corpus as a whole enables a collective pic-
ture of the composition of this target to emerge. This sum-

mary could inspire further discoveries or hypotheses, as the
reader considers, for example, what it means for feldspar,
magnetite, and illite to be jointly present and whether this is
unusual.

3 Challenges
In addition to the typical challenges of conducting informa-
tion extraction in a new domain (e.g., domain-specific vo-
cabulary), there are several NLP/IE challenges of special in-
terest involved in this project.

First, we must maintain high precision in the extracted
information. For this application, precision is more impor-
tant than recall; users would rather have an incomplete sum-
mary than one that contains incorrect information. Previous
work on high-precision IE has emphasized the importance
of human review (Caruana, Hodor, and Rosenberg 2000).
The AutoSlog-TS system ranks candidate extraction pat-
terns based on their prevalence in a set of (unannotated) rele-
vant versus irrelevant documents, enabling human review to
be focused on the most likely patterns first (Riloff 1996).
This process also provides an assessment of the system’s
current precision in extracting patterns. We plan to likewise
incorporate weak supervision via human review of the ex-
tracted patterns and properties.

Second, we must identify and handle cases where the ex-
tracted information within a summary is not consistent. If
the system extracts a pair of properties such as “high in mag-
netite” and “low in magnetite”, for the same target, the con-
sistency of the collective result is reduced. In some cases,
it is non-trivial to determine whether two facts are consis-
tent or contradictory. For example, consider two hypotheti-
cal sentences: “Target Oliphaunt is feldspar-rich” and “Tar-
get Oliphaunt has low Si.” By definition, a feldspar contains
a lot of silicon, but domain knowledge is required to detect
that these statements are in conflict.

When contradictions are detected, we must determine
how to reconcile them. The MTE inherently requires ro-
bust information fusion to generate each encyclopedia entry.
Conflicts are especially likely since the information is ex-
tracted from different authors and publications rather than a
single source. Existing approaches to cross-document infor-
mation fusion include assigning a confidence proportional to
the number of sources that agree on a fact and estimating the
reliability of the sources themselves (Ji 2010).

Since there is a temporal component to the papers, it can
also be the case that an interpretation could be overturned
or negated by later findings or a more careful examination
of the available data. The same challenge appears when per-
forming information extraction for news articles (McKeown
and Radev 1995; Ji 2010). A simple strategy would be to
let the most recently reported information, as determined
by publication date, supersede older information. However,
since apparent conflicts could be created by an incorrect ex-
traction (see above), it may be best to flag the facts as con-
flicting but let the user review them.

Third, coreference is especially challenging because of
the diversity in how authors refer to the same targets or
properties. Windjana is variously referred to as “Wind-
jana”, “Windjana drill fines”, “Windjana drill tailings”,



“Windjana sample”, “Windjana sandstone”, “it”, etc. Ele-
ments and minerals have multiple manifestations; “Cl” vs.
“chlorine”, “potassium feldspar” vs. “K-feldspar” vs. “K-
spar”, etc. Coreference resolution remains an unsolved prob-
lem, although new advances in active learning are promis-
ing (Sachan, Hovy, and Xing 2015).

Fourth, when interpreting observations, scientific conclu-
sions range from solid facts to speculation about causes. In
some cases, evidence even for basic properties (e.g., “con-
tains Mn”) may fall into a gray area. Scientific language
may therefore employ epistemic modifiers such as “likely”
or “probably” or “possibly.” Examples from the LPSC 2015
corpus related to the Windjana target include “the Wind-
jana drill tailings likely contain a spectrally opaque mate-
rial (e.g., magnetite, ilmenite)” (Johnson et al. 2015) and
“the potential presence of illite in Windjana” (Rampe and
others 2015). This type of language is known as hedging,
and some methods have been developed for automatically
detecting hedges (Medlock and Briscoe 2007; Agarwal and
Yu 2010). Distinguishing this information from more con-
fidently stated conclusions is vital to preserving the nuance
reported in the documents, as previously studied in the con-
text of medical discussion forums (Sokolova et al. 2013).

4 Conclusions and Next Steps
There is a growing need for a comprehensive, up-to-date
compilation of Mars surface targets and knowledge of what
has been discovered about them. We are working to auto-
matically construct a Mars Target Encyclopedia by applying
information extraction methods to planetary science pub-
lications. This is a cross-document information extraction
task that will benefit ongoing science investigations by pro-
viding the full context of previously published knowledge.
Browsing the synthesized encyclopedia entries, with their
summaries of target knowledge, could also reveal previously
undetected connections or similarities between targets.

We have employed Tika, Sundance, and AutoSlog to ex-
tract basic information about Mars surface targets. We plan
to employ a small amount of human review to provide light
supervision/feedback and evaluation of the system’s preci-
sion. Important open questions remain about how to detect
and accommodate inconsistency in information extracted
from different documents at different times. The system also
must correctly capture epistemic modifiers so that the level
of confidence in the extracted knowledge is preserved.

The initial term lists that we give to AutoSlog were man-
ually compiled, but we plan to expand them automatically
using bootstrapping methods for semantic lexicon induc-
tion. The goal is to learn additional terms that can refer to
Mars targets, chemicals, and rocks/minerals, such as miss-
ing terms (because manually compiled lists are inevitably
incomplete) as well as name variants (e.g., “World-beater”
vs. “Worldbeater”), general terms (e.g., “target”), abbrevia-
tions (e.g., “F” for fluorine), and shorthand terms (e.g., “Fe-
oxide” vs. “iron oxide”). We will use the Basilisk semantic
lexicon bootstrapping algorithm (Thelen and Riloff 2002),
using the manually compiled lists as seed terms and a large
collection of planetary science articles as the text corpus.
Basilisk automatically learns new semantic class members

by identifying terms that consistently co-occur in related
contexts with the seeds, in an iterative bootstrapping pro-
cess. Basilisk has been successfully used to generate seman-
tic dictionaries for a variety of domains, including disease
outbreaks (Phillips and Riloff 2007; Qadir and Riloff 2012),
terrorist events (Thelen and Riloff 2002), and subjectivity
analysis (Riloff and Wiebe 2003). We will manually review
Basilisk’s proposed additions to maintain high integrity of
the lists.

In addition to these plans, we welcome suggestions that
can help guide the evolution and maturation of the MTE to
maximize its utility and impact.
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