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ABSTRACT
Data analysis and machine learning methods have great potential
to aid in planetary exploration. Spacecraft often operate at great
distances from the Earth, and the ability to autonomously detect
features of interest onboard can enable content-sensitive down-
link prioritization to increase mission science return. We describe
algorithms that we designed to assist in three specific scientific
investigations to be conducted during flybys of Jupiter’s moon Eu-
ropa: the detection of thermal anomalies, compositional anomalies,
and plumes of icy matter from Europa’s subsurface ocean. We also
share the unique constraints imposed by the onboard computing
environment and several lessons learned in our collaboration with
planetary scientists and mission designers.
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1 INTRODUCTION
Spacecraft operating at large distances from the Earth must conduct
several activities in an entirely autonomous fashion, including navi-
gation, data collection, and communication, due to the time it takes
for commands to reach the spacecraft. A signal sent from the Earth
takes up to 25 minutes to reach Mars and up to an hour to reach
Jupiter. Therefore, spacecraft activities are typically transmitted
in a pre-planned script rather than controlled through real-time
commanding. This approach is very effective when the spacecraft
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position, environment, and other factors are known or can be pre-
dicted in advance. However, it precludes adaptation to unanticipated
conditions and opportunities.

Our goal is to support planetary exploration by remote spacecraft
using onboard data analysis methods when direct human oversight
is not possible. This is particularly important when studying rare,
transient events whose occurrence, location, and duration cannot
be predicted. Examples include dust devils on Mars [16], meteorite
impacts [10], lightning on Saturn [13], and icy plumes emitted by
Enceladus and other bodies [17]. To enable fast detection and re-
sponse to dynamic events, Chien et al. proposed an “agile science”
approach to space exploration that combines onboard data analy-
sis with a resource-aware planner to modify spacecraft activities
in response to changing conditions and detections [7]. More gen-
erally, onboard data analysis enables responsive decision making
such as how to prioritize observations based on their content and
what follow-up observations to collect. These capabilities become
progressively more valuable as spacecraft range to more distant
destinations with correspondingly longer communication delays
and smaller data downlink allocations.

In this work, we focus on the Europa Clipper mission, which
plans to launch in the 2020’s to explore, map, and characterize
Jupiter’s moon Europa [2, 21]. The mission’s science objectives
most relevant to this effort include the detection of thermal anom-
alies (hot spots), regions of unusual composition, and plumes, if any.
The location, timing, and prevalence of these features is not known.
In collaboration with Clipper mission and planetary scientists (in-
cluding authors Davies, Cameron, Daubar, and Phillips), we have
developed and evaluated data analysis methods to address each of
these scientific priorities, subject to severe resource constraints. We
describe these methods and their performance characteristics. The
key lessons we learned about the constraints and opportunities in-
volved in developing data analysis methods for operation onboard
a spacecraft include:

• Simple methods with high interpretability and low resource
consumption are most likely to be adopted by a mission.

• Collaboration with experts in spacecraft design and mission
science objectives is vital to ensuring the effort is focused
on meaningful problems with feasible implementations.

• Performance metrics should reflect audience priorities.
• Risk is an overriding concern in spacecraft development.
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Figure 1: Europa Clipper spacecraft (artist’s conception). Im-
age credit: NASA/JPL-Caltech

2 MOTIVATION AND RELATED WORK
Jupiter’s moon Europa, about the size of Earth’s moon, is thought
to contain an ocean of liquid water beneath its frozen, icy crust.
Understanding the complex geophysical and geochemical processes
on Europa is a high priority for NASA and the planetary science
community. Europa is also a target of interest for astrobiology, as
it may meet our current criteria for the existence of a biosphere:
liquid water, the right chemical elements, and an energy source.

NASA’s Europa Clipper mission (see Figure 1) has an overarching
science goal to “Explore Europa to investigate its habitability” [21].
This goal is supported by three mission objectives: (1) Characterize
the ice shell and any subsurface water; (2) Understand the habit-
ability of Europa’s ocean through composition and chemistry; and
(3) Understand the formation of surface features, including sites
of recent or current activity. The mission will employ a suite of
nine science instruments to gather both remote sensing and in situ
observations.

Europa Clipper will enter a highly elliptical orbit around Jupiter
with a 14-day period punctuated by brief flybys of Europa to min-
imize the spacecraft’s exposure to Jupiter’s high radiation envi-
ronment [12]. Most of the data will be collected during a four-
hour period centered on the time of closest approach to Europa.
The majority of each orbit (∼10 days) will be devoted to gradu-
ally transmitting all of the data (∼100 Gb per flyby) back to Earth.
The instruments have the capability to collect far more data than
can be transmitted; the onboard storage limit is 550 Gb. Prioriti-
zation of data to meet the downlink limits is vital to enable the
planning process and to ensure that key scientific discoveries are
not missed. We hypothesize that prioritizing downlink based on
content-sensitive onboard data analysis will be more effective than
the default priorities assigned during observation planning.

2.1 Challenges for Onboard Data Analysis
The high-radiation environment surrounding Europa creates a sig-
nificant operational challenge. Radiation can cause the spacecraft
CPU to reset, interrupting data collection or downlink activities.
It can also corrupt data that is onboard the spacecraft waiting to
be transmitted to Earth. Radiation-induced noise in the data can
impact the quality of onboard data analysis [31]. Europa Clipper
will therefore use a RAD750 processor, which is robust to radiation

but operates at a maximum clock rate of 200 MHz, an order of mag-
nitude slower than a typical desktop computer (or even a mobile
phone). This severely limits the amount of onboard computing ca-
pability. Power constraints may impose further limits that preclude
the use of otherwise idle periods.

A second important challenge is that data available onboard
the spacecraft will be uncalibrated. In some cases, an approximate
calibration can be performed [5], but it is necessary to demon-
strate that the analysis algorithm performs sufficiently well on the
pseudo-calibrated products. In other cases, it may be advantageous
to develop an algorithm that is customized for operation directly
on the uncalibrated data.

In addition to the technological and environmental challenges,
there are also psychological and cultural factors that must be consid-
ered. Autonomous spacecraft analysis and decision making raises
concerns about a corresponding increase in risk. The potential im-
pact of an incorrect detection or flawed decision must be assessed
and minimized. As much as possible, the onboard data analysis
module must be isolated from the primary spacecraft activities so
that it cannot interrupt basic health and safety operations.

2.2 Onboard Data Analysis Objectives and
Related Work

Our goal is to develop data analysis methods that can run onboard
the Europa Clipper spacecraft to detect and prioritize observations
of high scientific value. Each observation will be assigned a default
downlink priority prior to uplink. Onboard data analysis can decide
whether to adjust the priority based on the observation’s actual
content. For example, an image that captures an erupting plume
could receive a high priority to ensure that it is received quickly and
can inform future targeting plans. An image that is dominated by
radiation corruption or other artifacts could receive a low priority.
Ultimately, this capability could enable more efficient exploration of
Europa by (1) directing attention to data of most scientific value to
inform the planning process and (2) increasing the “science return”
of the mission (i.e., speed with which science objectives are met,
crucial given the spacecraft’s continual radiation bombardment).

In the onboard computing regime, with limited RAM and CPU
resources, advanced machine learning methods such as deep con-
volutional networks cannot yet be employed due to their computa-
tional cost. Previous work with other spacecraft has likewise sought
a balance between model performance and its computational cost
or complexity. For example, the EO-1 Earth-orbiting spacecraft re-
ceived a series of software updates that enabled it to detect volcanic
eruptions [11] and to respond by automatically collecting follow-up
images the next time the spacecraft passed over the same locations,
or even to signal other spacecraft to observe the affected areas.
The Swift spacecraft in Earth orbit detects gamma-ray bursts with
one telescope and quickly points two other telescopes to observe
the same source at x-ray and ultra-violet wavelengths [15]. The
Mars Science Laboratory rover autonomously detects rock targets,
ranks them according to current mission science priorities, and
collects compositional spectra of the highest-priority targets using
the ChemCam instrument, without any human intervention [14].

Several optimized machine learning models have been deployed
for use onboard spacecraft. Support vector machines with linear
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and Gaussian kernels have been used onboard EO-1 to detect small
sulfur deposits on glacial ice [19], a biosignature that could poten-
tially be found on Europa. Random forests have been used in Earth
orbit by a CubeSat [8] and EO-1 [30] to assess the fraction of an
image that is covered by cloud, which can enable the prioritization
of clear images ahead of those in which the surface is obscured.

Despite the use of machine learning onboard several spacecraft,
in general onboard analysis and decision making is considered a
novel, high-risk and high-payoff endeavor. Our target is the Europa
Clipper spacecraft, which will travel much farther away than Earth
or Mars orbit and for which each flyby will be unique. There may
only be a single chance to capture a particular event or unusual
surface feature, so content-sensitive prioritization could have a
large scientific impact.

3 METHODS AND RESULTS
We have developed custom data analysis and event detection meth-
ods for three instruments on the Europa Clipper spacecraft. The
instruments acquire different types of data and seek to achieve
different scientific goals.

3.1 Thermal Anomaly Detection
Detecting thermal anomalies on the surface of Europa is essen-
tial for addressing a number of science goals set forth in the 2011
Planetary Science Decadal Survey [9] such as understanding cryo-
volcanism and plumes that can bring subsurface materials to the
surface, enabling astrobiological studies of Europa’s subsurface
ocean [18, 27]. Previous studies of Europa’s surface from spacecraft
and ground-based telescopes have failed to definitively detect ther-
mal anomalies caused by internal Europa activity (versus heating
from the Sun). For example, the Photopolarimeter-Radiometer (PPR)
instrument onboard the Galileo spacecraft did not detect any hot
spots on Europa, but its detection sensitivity could permit anomalies
up to 100 km2 to go undetected [23]. Similarly, follow-up studies
using the ground-based Atacama Large Millimeter Array (ALMA)
observatory found potential anomalies in Europa’s thermal inertia,
but no definitive Europa heat sources [28].

The Europa Thermal Emission Imaging System (E-THEMIS) in-
strument on the Europa Clipper mission is designed to detect ther-
mal anomalies on the surface of Europa. These anomalies could
include geologically recent surface and sub-surface activities such
as plumes, active vents, and resurfacing of material. Thermal charac-
terization of the surface will also support landing site safety assess-
ment for future Europa missions. E-THEMIS uses an uncooled mi-
crobolometer detector in a radiation-hardened design to withstand
Jupiter’s harsh environment. Filters attached to the microbolome-
ter allow the instrument to detect thermal infra-red radiation in
three discrete spectral bands: 7 to 14 µm, 14 to 28 µm, and 28 to
70 µm. E-THEMIS will collect Europa data at much higher spatial
resolution than PPR.

3.1.1 Thermal Anomaly Detection Method. Because E-THEMIS is
similar to the Thermal Emission Imaging System (THEMIS) in-
strument flown on the Mars Odyssey spacecraft, we build on an
existing algorithm designed to detect thermal anomalies within
Mars THEMIS data [5]. The algorithm operates by applying a rudi-
mentary calibration to convert digital number (DN) values available
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Figure 2: Example Europa thermal anomaly (temperature
160 K, area 5,000 km2) as viewed by E-THEMIS at a distance
of 50,000 km. Simulated surface temperature is converted
into the digital number (DN) recorded by the instrument.

onboard the spacecraft into approximate temperatures:

T = α ln [(DN − o × д) × д] − β , (1)

where o and д are the instrument offset and gain, and α = 101.85
and β = 505.69 are empirically derived constants. Then, any pixel
in the observation exceeding a pre-defined threshold temperature
is flagged as an anomaly. Appropriate threshold temperatures will
be much lower for Europa than for Mars. This threshold-based
method will serve as a baseline for studying future approaches,
such as incorporating spatial context around each pixel.

3.1.2 Results using Simulated E-THEMIS Data. No E-THEMIS data
yet exists, so we generated 5000 simulated observations to charac-
terize algorithm performance1. Each observation was generated
by randomly selecting a spacecraft location (±50,000 km from clos-
est approach to Europa) on one of 46 planned flybys. We used a
thermal model to simulate the Europa surface temperature as a
function of latitude, longitude, and local solar time (Sun position).
We simulated the appearance of Europa within the E-THEMIS field
of view given Europa’s radius of 1591 km. We used ray tracing to
determine, given the surface temperature model and the relative
positions of Europa and the spacecraft, the amount of thermal radi-
ation from Europa that a given pixel would collect. We used Monte
Carlo integration over 100 uniformly random sub-pixel locations
within each pixel.

We injected artificial thermal anomalies into the simulated Eu-
ropa observations by selecting a random anomaly radius between
1m and 25 km and random temperature between 130 K and 275 K,
then modifying the modeled surface temperature (Figure 2, left).
We added Gaussian noise with σ = 1DN to each pixel, then used
a lookup table derived from the E-THEMIS instrument model (in-
cluded in the dataset online) to convert temperature to digital num-
bers and generate the final data product (Figure 2, right). The 5000
observations and 100 samples within each pixel provide sufficient
coverage of the randomly varied parameters and allow resolving
the pixel anomaly fraction to within 1%.

Figure 3 shows detection rates for anomalies of various sizes (in
terms of the fraction of the pixel filled) and temperatures using a
threshold of 140 K. This threshold is sufficiently high to guarantee
1Simulated E-THEMIS data set available at http://doi.org/10.5281/zenodo.2552814.
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Figure 3: Thermal anomaly detection rates in simulated
E-THEMIS Band 1 data with a threshold of 140K, as a func-
tion of anomaly pixel fraction (size) and temperature.

that all detections are true positives, enabling a focus on recall. In
this case, only Band 1 of the three-band simulated E-THEMIS data
is used because it is the most sensitive to anomalies above tem-
peratures of 140K. The results show that, for example, anomalies
comparable to the 170 K “tiger stripe” features detected by Cassini
on Enceladus [22] could be detected by this approach even if they
filled only ∼20% of a pixel. At a 50,000 km offset, this translates
to a 40 km2 anomaly on the surface, with even smaller anomalies
detectable at closer range, all of which are smaller and cooler than
features detectable in PPR data. Thus, even this simple threshold-
based approach has the potential to detect previously unknown
thermal anomalies on the surface of Europa.

Future work will explore how performance can be improved
with more sophisticated detection methods, and will improve the
fidelity of the simulation, which currently does not include emission
angle effects or radiation-induced, non-Gaussian noise. The use of
simple, circular anomalies is sufficient for evaluating this threshold-
based pixel-wise detection algorithm, but evaluating algorithms
that take more context into account will require morphologically
more realistic anomalies.

3.2 Compositional Anomaly Detection
The Europa surface is known to be composed primarily of water ice,
and any significant anomalies can provide clues to the evolution
of the surface and the types of surface alteration processes. These
processes include modification of the surface due to cosmic ray
bombardment, tidal heating from Jupiter, and the formation of
crustal ridges and bands that may reveal material brought up from
the subsurface ocean.

The Mapping Imaging Spectrometer for Europa (MISE) is a
Dyson imaging spectrometer that collects three-dimensional “cubes”
with a spatial dimension of 320 by 300 pixels and 480 spectral bands
(0.8 to 5.0 µm) [3]. MISE will collect compositional observations
of Europa with a spatial resolution of 25 m per pixel at a range of
100 km [3]. The peaks and troughs in each pixel’s spectrum allow
the identification of organics, salts, and radiation-altered materials.
Fine-grained knowledge of the ice composition can inform our un-
derstanding of the habitability of Europa’s ocean. MISE will also
investigate the geological history of Europa’s surface and search
for areas that are actively being resurfaced. MISE is sensitive to

different water ice structures that are indicators of age [4]. Fresh
surface deposits can provide a window into Europa’s interior.

MISE data products are large (527 Mb each). It is expected that
only three to eight MISE cubes can be downlinked per flyby, so
they must be carefully chosen. Anomaly detection can help ensure
that materials with rare or unexpected composition are marked for
priority downlink.

3.2.1 Compositional Anomaly Detection Methods. Spectral anom-
aly detection in hyperspectral images has been studied extensively.
In this study, we employed two commonly used anomaly detection
methods, one batch and one iterative.

The first algorithm is the widely used Reed Xiaoli spectral anom-
aly detector (RX) [6, 24]. RX builds a global model of the background
spectral distribution from the spectral mean and covariance of the
pixels in a given scene. RX computes an anomaly score for each
pixel with respect to this model. For a hyperspectral image X with
d spectral bands, the RX anomaly score ARX of pixel xi is

ARX (xi ) = (xi − µ)T Σ−1(xi − µ), (2)

where xi ∈ Rd is the spectrum of pixel xi , µ is the mean spectrum
across all pixels in X , and Σ is the background covariance matrix
computed from X across all d bands. The inverse covariance ma-
trix in equation (2) projects the spectra xi along the components
corresponding to the smallest eigenvalues [6]. A high ARX value
indicates that xi is anomalous with respect to the current scene.

The second algorithm is DEMUD, an anomaly detection method
that seeks to minimize redundancy in the top-ranked selections [32].
While RX computes a global, independent anomaly score with
respect to the data background distribution, DEMUD instead uses
an SVD model of its previous selections to select the item that
is most different from everything previously seen. The DEMUD
anomaly score for xi is its reconstruction error:

AD (xi ) = | |xi − (UUT (xi − µ) + µ)| |2, (3)

where U contains the top k principal components and UUT (xi −
µ) + µ is the reconstruction of xi using U . U is initialized using
the highest-scoring item based on an SVD of the full data set, or
if that is too costly, a randomly chosen item can be used. DEMUD
selects x ′ to maximize AD , updates U to include x ′, and re-ranks
the remaining items. The final ranking is the order of selection.
DEMUD’s anomaly score can also be expressed as

AD (xi ) = | |ŨT (xi − µ)| | or (4)

A2
D (xi ) = (xi − µ)T Ũ ŨT (xi − µ), (5)

where Ũ contains the principal components k + 1 through n. In this
form we see that RX and DEMUD both assess novelty by distance
to the mean in the space defined by the principal components with
least variance. The primary difference is that DEMUD’s model
changes with each new selection, while the RX model is fixed.

We compared the unsupervised RX and DEMUD methods to a
supervised matched filter approach [20]. The Target Presence score
TMF of a given mineral s for pixel xi is

TMF (xi ) =
sT Σ−1xi
√
sT Σ−1s

. (6)
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(b) Epsomite
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Figure 4: Novelty detection curves for three minerals injected into NIMS observation 14ENEUR15H01B.

The matched filter provides an upper bound on the discoverability
of mineral s within a given data set.

3.2.2 Results using NIMS Analogue Data. To evaluate the anom-
aly (RX and DEMUD) and target (MF) detectors, we injected artifi-
cial compositional anomalies into existing observations of Europa.
Since MISE data does not yet exist, we used analogue data from the
Galileo Near Infrared Mapping Spectrometer (NIMS) instrument,
which collected observations of Europa at almost the same spectral
range (0.8 to 5.2 µm), albeit lower spatial resolution. We randomly
selected a pixel xi and replaced it with xi ′, a linear mixture between
xi and the laboratory spectrum s for a selected mineral, given a
specified anomaly fraction 0 < fr ≤ 1.0:

xi
′ = fr s + (1 − fr )xi .

We used minerals (sulfates, silicates, and oxides) that would be of
interest if discovered on Europa.

We evaluated the ability of the anomaly and target detectors to
detect an injected anomaly by assessing its assigned novelty rank.
For each algorithm, we sorted all of the pixels in the image in de-
creasing order of anomaly score and reported the rank at which the
injected anomaly was discovered (lower is better). Results for NIMS
Europa observation 14ENEUR15H01B2 are shown for three minerals
in Figure 4. At high anomaly fractions, the perturbed pixels are eas-
ily detected (novelty rank is 0). When less of the anomalous mineral
is present, detection becomes more difficult, and the novelty rank
increases. The supervised matched filter provides an upper bound.
Minerals vary in terms of their novelty (and therefore detectability
using RX or DEMUD). Hyalite is very different spectrally from data
in this NIMS observation, as shown in Figure 5, so it is easily de-
tected. Epsomite and ulexite are more challenging to detect because
they are similar to the original data and therefore not inherently
anomalous. Ulexite detection for small anomaly fractions performs
worse than randomly selecting a pixel.

Some minerals, such as ulexite, exhibit non-monotonic novelty
detection curves. We found that this occurs when the addition of a
small amount of s (low fr ) causes xi to initially becomemore similar
to the background distribution and then, as fr continues to rise,
the perturbed pixel becomes more like s . Even 100% pure ulexite is
2https://pds-imaging.jpl.nasa.gov/data/go-j-nims-3-tube-v1.0/go_1115/europa/
14e002ci.qub; see full description of the data set in Supplementary Materials.
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Figure 5: Spectra for minerals in Figure 4 and mean data
spectrum for NIMS observation 14ENEUR15H01B.

difficult to distinguish from the original Europa observations, so it
is unsurprising that small amounts could result in a spectrum that
is more similar to the background. In contrast, since the matched
filter directly computes the similarity between xi and s , it is not
influenced by the data distribution and it does not exhibit this
inflection.

We summarize the discoverability of a given mineral anomaly
type by computing its average novelty rank across all anomaly
fractions, for 100 trials (see Table 1). Overall, we found that RX gen-
erally out-performed DEMUD in discovering injected anomalies
(exceptions are bloedite and opal). For this data set, across different
mineral groups, the property that most determines discoverabil-
ity is whether the mineral is hydrated. Hydrated minerals such as
epsomite, opal, and ulexite were consistently the least anomalous,
whereas anhydrous minerals like sulfur, olivine, and rutile were
quickly discovered. This is consistent with our current understand-
ing of Europa’s surface composition (mostly water ice).

3.3 Plume Detection
A third important science objective of the Europa Clipper mission
is to characterize any plume activity, which would provide key
information about current processes at work beneath the frozen
surface. Plumes have been observed emitting from Saturn’s moon
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Table 1: Discoverability of different minerals injected into
NIMS Europa observation 14ENEUR15H01B in terms of mean
(and standard error of) novelty rank (lower is better)
across all anomaly fractions (100 trials). A random baseline
achieves a novelty rank of 317.41 (4.16) for all minerals. Hy-
drated minerals are marked with (H).

Mineral RX DEMUD MF
Sulfates

Sulfur 0.19 (0.01) 1.43 (0.04) 0.00 (0.00)
Polyhalite 1.63 (0.04) 3.55 (0.13) 0.03 (0.00)
Bloedite (H) 24.01 (0.92) 20.04 (0.83) 0.75 (0.18)
Epsomite (H) 58.52 (2.29) 64.52 (2.31) 3.91 (0.49)

Silicates
Olivine 0.45 (0.01) 1.89 (0.07) 0.02 (0.00)
Pyroxene 1.11 (0.02) 3.24 (0.06) 0.05 (0.00)
Hyalite (H) 6.07 (0.16) 6.63 (0.39) 0.08 (0.01)
Opal (H) 256.55 (8.21) 197.12 (7.39) 32.33 (2.91)

Oxides
Rutile 0.55 (0.01) 2.18 (0.08) 0.03 (0.00)
Cuprite 11.08 (0.34) 17.44 (0.74) 0.40 (0.10)
Chromite 66.22 (2.33) 92.23 (3.54) 5.65 (0.81)
Ulexite (H) 282.55 (8.37) 391.06 (9.60) 33.94 (2.88)

Enceladus [17], and there are hints from observations by the Hubble
Space Telescope that similar activity could be present on Europa [25,
26], but as yet no definitive conclusions have been reached.

The Europa Imaging System (EIS) is composed of narrow- and
wide-angle visible-wavelength cameras with the ability to image
in color and in stereo [29]. EIS will produce global maps of Europa
at 100 m per pixel, with high resolution imagery at 1 m per pixel
or better in selected locations. Images from EIS will help constrain
the formation of surface features, address small-scale regolith pro-
cesses, and characterize potential landing sites for a possible future

landed mission. More distant images from EIS will allow searches
for plumes and other ongoing or recent geologic activity, as well
as to characterize the shape of Europa, which has implications for
subsurface structure.

3.3.1 Plume Detection Method. We adapted a method previously
proposed for onboard detection of plumes from other bodies in
the Solar System such as comets or Saturn’s moon Enceladus [33].
This approach creates a model of the target using a convex hull
to accommodate non-spherical small bodies. Europa is sufficiently
spherical to not require this complexity, so we instead apply Canny
edge detection followed by a Random Sample Consensus (RANSAC)
circle-fitting algorithm to find the limb (apparent edge). Next, we
conduct a plume search within a ring (“annulus”) that spans from
101% to 120% of the estimated radius of the body within the image
(see Figure 6). To increase robustness to pixel noise, plume detection
operates on average intensity values for 1024 annular sectors sur-
rounding the body. Any sectors whose average pixel values exceed
an adaptively determined threshold (i.e., 1.5 times the inter-quartile
range (IQR) across all sectors) are marked as plume candidates.

3.3.2 Results using Analogue Data. We used a variety of existing
analogue datasets to evaluate the proposed plume detection ap-
proach. They comprise 308 observations of Europa and other small
planets and moons collected by other spacecraft instruments (see
the Supplementary Materials for a full listing). Many of these im-
ages exhibit effects likely to appear in EIS images as well, such as
detector saturation, cosmic ray strikes, and low signal to noise ratio.
For each image, we manually labeled the limb of the body and (if
present) plumes to serve as ground truth3.

We compared the adaptive-threshold plume detection method
with a baseline method that employs a fixed threshold of 10DN
units. First, we computed area under receiver operating character-
istic (ROC) curve (AUC) in terms of plume detection, which maps

3EIS analogue image limb and plume labels available at http://doi.org/10.5281/zenodo.
2556063.

Applied Data Science Track Paper KDD ’19, August 4–8, 2019, Anchorage, AK, USA

2196

http://doi.org/10.5281/zenodo.2556063
http://doi.org/10.5281/zenodo.2556063


0.0 0.2 0.4 0.6 0.8 1.0

FPR

0.0

0.2

0.4

0.6

0.8

1.0

T
P

R

Failure to find limb

Plume Detection

Adaptive (AUC: 0.77)

Fixed (AUC: 0.52)

0.0 0.2 0.4 0.6 0.8 1.0

FPR

0.0

0.2

0.4

0.6

0.8

1.0

T
P

R

Failure to find limb

Plume Localization

Adaptive (AUC: 0.79)

Fixed (AUC: 0.53)

Figure 7: Plume detection and localization performance for
fixed (solid, blue) and adaptive (dashed, red) thresholds.

directly to prioritization decisions for each image (Figure 7, left). If
plume activity in any annulus sector was detected, the image was
marked as “contains plume.” If limb-finding failed, then this was
treated as “no plume.” The reduction in AUC due to limb-finding
failure appears in the plots as gray shaded regions. The adaptive
threshold yielded significant improvement in AUC relative to using
a fixed threshold, which performs poorly because DNs can vary
significantly across images due to difference in instrument charac-
teristics. We also evaluated plume localization, i.e., decisions made
at the individual annulus sector level (Figure 7, right). This corre-
sponds to a scenario in which the spacecraft transmits only the
(cropped) active plume regions to reduce downlink consumption.
Once again, the baseline approach performs near chance levels,
whereas the adaptive threshold offers a significant advantage.

We investigated individual outputs to identify the strengths and
weaknesses of this approach. We found that the limb detection
process is robust to the presence of missing data or other artifacts
(Figure 8(a)). In both cases, the limb was correctly modeled, and
no spurious plumes were detected. However, limb detection also
yielded incorrect results for some cases (Figure 8(b)). In the left
image (Io), the circle was fit to a bright block of pixels in the lower
right part of the image. In the right image (Enceladus), the body
is not in view, only the plume, and a spurious circle is fit to stray
pixels in the scene. We would therefore only employ this method for
images with sufficient coverage of the body and true limb regions.

4 OPERATIONAL SCENARIOS
The preceding section described several methods for onboard anal-
ysis of scientific data collected by the Europa Clipper spacecraft
and an evaluation of each component’s performance on analogue
or simulated data sets. In this section, we address the practical ques-
tions of how and where this capability could be deployed in the
onboard spacecraft environment. We describe options and recom-
mendations for an onboard science architecture. We also discuss the
lessons we have learned to date in our collaboration with Clipper
mission personnel and investigation scientists. These lessons are
the key takeaways necessary to move this technology forward for
deployment onboard a spacecraft.

(a) Successful limb detections despite artifacts in images of Callisto
(left) and Europa (right)

(b) Incorrect detections due to artifacts (Io, left) or body not in view
(Enceladus, right)

Figure 8: Example successful and failed plume detections.

4.1 Europa Clipper Operational Scenarios
We have designed an onboard science architecture for Europa Clip-
per that is customized to the existing spacecraft design. Figure 9
shows how Clipper’s instruments will send data to the Bulk Data
System (BDS) for temporary storage onboard. Each observation is
stored in a pre-assigned priority bin. After the flyby, when downlink
to Earth begins, data is selectively transferred from the priority bins
to the the staging filesystem according to the downlink priority
table. This table can be updated at any time by commands sent
from Earth (e.g., prior to the next downlink). Data is packetized and
transmitted to the ground (Earth).

The onboard science algorithms can be deployed in two possible
locations. First, they can be integrated into each instrument’s in-
dividual flight software. This permits the greatest flexibility, since
priority decisions can be made according to individual instrument
science objectives. However, the computational resources of individ-
ual instruments are even more constrained than those of the main
spacecraft CPU; some instruments have only a special-purpose
field-programmable gate array (FPGA) that contains code opti-
mized for data collection and nothing more. In addition, this design
choice would preclude any cross-coordination between instruments
(e.g., for a thermal anomaly detection by E-THEMIS to increase the
priority of a coincident spectral observation by MISE) without the
addition of new cross-instrument communication channels.

The second option is for data analysis to take place on the main
spacecraft CPU. It has the greatest computational resources avail-
able onboard and is the final decision point prior to any data being
transmitted to the Earth. Updates to the downlink priority table can
be made immediately by the spacecraft itself. The main CPU can
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synthesize detections from multiple instruments to enable cross-
coordinated prioritization decisions. In addition, Europa Clipper
will have the ability to partition CPU resources (memory and cycles)
so that different software modules can be individually updated and
will not interfere with other activities, which increases the robust-
ness of the mission to faults and also permits strict control over
resource consumption [2]. The drawback of running data analysis
methods on the main CPU is that the instruments will already have
stored all candidate data products on the BDS, in a fragmented for-
mat that was not designed for ease of onboard analysis. However,
overall the benefits of this choice outweigh the drawbacks.

The Europa Clipper mission is planning 46 flybys of Europa
over the period of several Earth years. We would likely not use
onboard data analysis and prioritization on the first flyby but instead
collect real Clipper observations of Europa with which to evaluate
the algorithms described in this paper and then adapt them as
needed. After demonstrating satisfactory performance on these
early observations, we would activate the algorithms for operation
onboard the spacecraft.

4.2 Lessons Learned
The Europa Clipper mission is still under development, with a
launch date more than four years into the future. Our collaboration
with the scientists and mission designers has been and will continue
to be critical to tailoring onboard data analysis methods to the
science objectives and the operational constraints of the mission.
Our work to date has yielded the following lessons that can also
inform future development of onboard science analysis for other
missions.

Simpler analysismethods are often best. In the quickly evolv-
ing world of machine learning research, it is tempting to apply the
latest, most sophisticated approaches to a given problem. However,
spacecraft operations impose severe resource constraints (memory
and CPU) that require the exploration of the tradeoff between run-
time and accuracy. For example, while deep convolutional neural
networks are commonly used today for image analysis tasks, they
are infeasible for use on a single-core 200-MHz processor. Develop-
ing more capable radiation-hardened (e.g., multicore) processors is

an ongoing area of investigation [1]. To date we have found good
performance using basic computer vision and statistical methods
that have low computational demands. One of our next steps will
be to benchmark each algorithm on a RAD750 processor to obtain
realistic estimates of memory and CPU consumption.

Another primary benefit of using simpler analysis methods is
that they can be readily understood by experts from outside of
computer science or artificial intelligence. Methods such as thresh-
old application, outlier detection, and circle-fitting plus statistical
testing are general enough to be accessible to the wider scientific
community. Interpretability is essential for adoption and trust.

Performance metrics should be chosen to capture behav-
ior of interest to the audience. For the benefit of the KDD au-
dience, we have focused on traditional machine learning metrics
such as probability of detection, precision, and recall. We are in
the process of working with mission engineers to conduct mission
simulations [12] in which we will quantify performance in ways
that have immediate meaning to the spacecraft community, such as
the increase in science return (e.g., fraction of downlinked images
that contain a feature of interest such a a plume) and number of
flybys required to meet the science objectives (fewer is better).

Risk is an overriding concern in spacecraft design and de-
velopment. A new technology or capability must demonstrate
large potential benefits for any increase in risk to be tolerated.
Autonomous decision making is generally viewed as increasing
risk: if a spacecraft’s actions depend on unknown factors such as
its environment or the frequency with which a feature of interest
occurs, the outcome cannot be precisely modeled and checked for
safe outcomes in advance. It is necessary to explore a wide range of
possible scenarios and demonstrate no increased risk (or a tolerable
level of risk) to the mission’s operations. As noted above, processor
partitioning is an excellent risk mitigation design choice.

5 CONCLUSIONS
We have developed algorithms to support three scientific objectives
for the upcoming Europa Clipper mission: the detection of thermal
anomalies, compositional anomalies, and plumes. Each algorithm
demonstrates sufficiently high performance to satisfy the plane-
tary science investigators. Our next steps will be to benchmark the
algorithms on a RAD750 processor and quantify potential improve-
ments in science return using mission simulations. The lessons
learned from this collaboration can benefit future efforts to deploy
data analysis for use onboard other spacecraft as well.
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SUPPLEMENTARY MATERIALS
This supplementary material contains the information necessary
to reproduce the experiments described in the paper.

Section 3.1: Thermal Anomaly Detection
The simulated E-THEMIS data set (5000 images) and accompanying
simulated thermal anomalies can be downloaded at http://doi.org/
10.5281/zenodo.2552814.

Section 3.2: Compositional Anomaly Detection
The data set used to evaluate compositional
anomaly detection is Galileo NIMS observation
14ENEUR15H01B of Europa (see right). It con-
sists of 874 pixels observed at 135 wavelengths
from 2.085 to 3.988 µm. It can be downloaded
at https://pds-imaging.jpl.nasa.gov/data/go-j-
nims-3-tube-v1.0/go_1115/europa/14e002ci.qub.

NIMS data pre-processing. NIMS data may contain missing
values, which are indicated with NaN values. For each NIMS cube,
we first removed all pixels that were composed entirely of missing
observations. For the remaining pixels, any missing values were
imputed using linear interpolation from the remaining non-NaN
spectral channels for that pixel.

NIMS spectral library. We injected known mineral spectra
to create synthetic compositional anomalies. The mineral spectra
were obtained from the USGS NIMS spectral library, which is avail-
able at https://archive.usgs.gov/archive/sites/speclab.cr.usgs.gov/
spectral.lib04/lib04-NIMS.html. This library includes 498 spectra
with reflectance reported from 0.8 to 2.7–3.0 µm.

For the experiments reported in Section 3.2, the intersection of
the wavelength ranges for 14ENEUR15H01B and the spectral library
restricts analysis to the range 2.085 to 2.7 µm, as shown in Figure 5.

DEMUD parameter. The DEMUD algorithm was run with the
number of principal components, k , set to 10.

Section 3.3: Plume Detection
We compiled 308 images from previous missions to serve as ana-
logues for the data EIS is expected to collect. The closest instrument
analogue is the Mercury Dual Imaging System (MDIS) instrument
flown on the MESSENGER spacecraft. While Mercury is a rocky
body without any plume activity, the MDIS cameras had a similar
design to that planned for EIS. Other predecessor instruments vary
in terms of their imaging properties but are useful analogues be-
cause of their choice of targets. These include images of Jupiter’s
moons Callisto, Europa, Ganymede, and Io and Saturn’s moon Ence-
ladus collected by the Galileo Solid-State Imaging (SSI), Cassini
Imaging Science Subsystem (ISS), and New Horizons Long Range
Reconnaissance Imager (LORRI) instruments.

Images were selected to simulate the views of Europa that EIS
will collect. Some contain the entire body of interest, often with
partial illumination from the side so as to highlight plume activity.
Others contain only a portion of the body to enable a close view of
the limb where plume activity may be present. The ISS Enceladus
images were chosen from Cassini’s seventh flyby of Enceladus, with
known plume activity present. Likewise, the Galileo SSI and LORRI
Io images have known volcanic activity. The remaining targets do

not exhibit plume activity and instead serve as control subjects for
plume detection.

Our manual labels of the limb and plume(s) for each image can be
downloaded at http://doi.org/10.5281/zenodo.2556063. All source
images are available at https://pds-imaging.jpl.nasa.gov/search/.
The following tables list the specific image product identifiers.

Cassini ISS narrow-angle camera (Enceladus), 40/40 contain plumes
N1635781564_1 N1635781640_1 N1635781702_1 N1635781742_1
N1635781798_1 N1635781940_1 N1635781995_1 N1635782028_1
N1635782061_1 N1635782096_1 N1635804540_1 N1635804756_1
N1635804850_1 N1635804944_1 N1635805182_1 N1635805649_1
N1635805743_1 N1635805837_1 N1635808826_1 N1635809286_1
N1635809569_1 N1635809625_1 N1635809687_1 N1635809727_1
N1635809799_1 N1635813819_1 N1635813867_1 N1635813923_1
N1635814065_1 N1635814245_1 N1635814301_1 N1635814379_1
N1635814521_1 N1635815659_1 N1635815737_1 N1635815815_1
N1635815957_1 N1635816588_1 N1635816682_1 N1635816920_1

Galileo SSI (Europa), 0/22 contain plumes
IMAGE_ID, File IMAGE_ID, File IMAGE_ID, File
G1E0004, 5139r G7E0010, 4500r 10E0001, 2778r
12E0003, 4626r 12E0004, 4639r 12E0005, 4652r
14E0054, 4842r 14E0056, 4878r 14E0057, 4901r
14E0058, 4914r 14E0062, 4965r 14E0063, 4978r
14E0064, 5000r 14E0066, 5026r 14E0067, 5039r
14E0068, 5052r 15E0096, 4429r 19E0008, 4726r
25E0021, 6314r 25E0025, 6366r 25E0029, 6427r
25E0031, 6452r

Galileo SSI (Io), 12/19 contain plumes
C3I0040, 1300r C9I0015, 3178r C9I0016, 3200r
C9I0017, 3204r C9I0018, 3207r G2I0020, 6300r
G8I0010, 8645r G8I0011, 8700r G8I0012, 8723r
G8I0013, 5045r G8I0014, 5100r G8I0015, 5123r
G8I0019, 2445r 10I0028, 4204r 10I0029, 4207r
11I0012, 0085r 11I0015, 3485r 31I0001, 5146r
31I0003, 5547r

Galileo SSI (Callisto), 0/7 contain plumes
G2C0004, 2900r G7C0001, 6200r 30C0027, 1600r
30C0028, 1901r 30C0029, 2201r 31C0001, 4300r
31C0001, 4301r

Galileo SSI (Ganymede), 0/13 contain plumes
C9G0010, 1000r C9G0011, 1013r C9G0012, 1026r
C9G0013, 1039r C9G0016, 1078r E6G0020, 1500r
E6G0021, 1513r G1G0001, 2000r 14G0001, 3078r
20G0001, 6900r 30G0003, 7600r 30G0004, 7900r
30G0005, 8200r

MESSENGER MDIS narrow-angle camera (Mercury), 0/26 contain plumes
EN0108828545M EN0108828592M EN0108828634M EN0108828799M
EN0108828804M EN0108828855M EN0108828906M EN0108829090M
EN0108829172M EN0108830151M EN0108830222M EN0108830339M
EN0108830513M EN0108830518M EN0108830711M EN0131773890M
EN0131773947M EN0131774207M EN0131774306M EN0131774343M
EN0131774348M EN0131774578M EN0131774583M EN0131774634M
EN0131774685M EN0162736761M

MESSENGER MDIS wide-angle camera (Mercury), 0/97 contain plumes
EW0108816478C EW0108816480D EW0108816482E EW0108817678C
EW0108817680D EW0108817682E EW0108818878C EW0108818880D
EW0108818882E EW0108820007C EW0108820012D EW0108820017E

(cont.)
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http://doi.org/10.5281/zenodo.2556063
https://pds-imaging.jpl.nasa.gov/search/


MESSENGER MDIS wide-angle camera (Mercury), cont.
EW0108820022F EW0108820027G EW0108820032H EW0108820037I
EW0108820042J EW0108820047K EW0108820052L EW0108820057A
EW0108829678A EW0108829683L EW0108829688K EW0108829693J
EW0108829698I EW0108829703H EW0108829708G EW0108829713F
EW0108829718E EW0108829723D EW0108829728C EW0131764500C
EW0131764505D EW0131764510E EW0131764515F EW0131764520G
EW0131764525H EW0131764530I EW0131764535J EW0131764540K
EW0131764545L EW0131764550A EW0131775228A EW0131775232L
EW0131775236K EW0131775240J EW0131775244I EW0131775248H
EW0131775252G EW0131775256F EW0131775260E EW0131775264D
EW0131775268C EW0131777088A EW0131777092L EW0131777096K
EW0131777100J EW0131777104I EW0131777108H EW0131777112G
EW0131777116F EW0131777120E EW0131777124D EW0131777128C
EW0162736786C EW0162736790D EW0162736794E EW0162736798F
EW0162736802G EW0162736806H EW0162736810I EW0162736814J
EW0162736818K EW0162736822L EW0162736826A EW0162739786C
EW0162739790D EW0162739794E EW0162739798F EW0162739802G
EW0162739806H EW0162739810I EW0162739814J EW0162739818K
EW0162739822L EW0162739826A EW0162741039C EW0162741043D
EW0162741047E EW0162741051F EW0162741055G EW0162741059H
EW0162741063I EW0162741067J EW0162741071K EW0162741075L
EW0162741079A

New Horizons LORRI (Io), 60/84 contain plumes
Full product id: lor_{id}_0x630_sci

0034583519 0034583522 0034599119 0034599122 0034630919 0034630922
0034685519 0034685522 0034698119 0034698122 0034721219 0034721222
0034769759 0034785119 0034785122 0034821014 0034821017 0034821020
0034829594 0034829597 0034829600 0034844219 0034844222 0034860614
0034860617 0034860620 0034873619 0034873622 0034889879 0034940519
0034940539 0034940542 0034943534 0034943537 0034943540 0034966574
0034966577 0034966580 0034974374 0034974377 0034974380 0034981619
0034981639 0034981642 0035015234 0035015237 0035015240 0035022029
0035022049 0035022052 0035029094 0035029097 0035029100 0035040494
0035040497 0035040500 0035077919 0035077939 0035077942 0035092814
0035092817 0035092820 0035121554 0035121557 0035121560 0035129519
0035129539 0035129542 0035140199 0035140219 0035140222 0035149919
0035149939 0035149942 0035208179 0035215619 0035215639 0035215642
0035222819 0035222839 0035222842 0035230619 0035230639 0035230642
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