
From Protocol Specification to Statechart to Implementation

Kiri L. Wagstaff, Ken Peters, and Lucas Scharenbroich
Jet Propulsion Laboratory,

California Institute of Technology

October 11, 2008

1



Abstract

This paper describes two major steps in model-based system design and implementation:
1) the process involved in converting a text-based system specification into a UML-compliant,
graphical statechart, and 2) the use of automatic code generation tools to convert the statechart
into a C or C++ implementation. We also describe how to use the graphical, interactive “test
harness” to test the behavior of the statechart’s generated code, a very useful tool for system
(protocol) design refinement. Finally, we describe how to automatically generate a Promela
version of the statechart model that can be verified using the SPIN model checker. Throughout
the paper, we focus on how these tools can be used to make the communications protocol
development process more streamlined and reliable.

1 Purpose and Intended Audience

Model-based design benefits designers, customers, and future adopters and enhancers of the system
being designed. These benefits are generally phrased in terms of the work associated with software
system development. However, our recent experience has highlighted the specific benefits that can
accrue to communications protocol designers who adopt a model-based approach to protocol design.
First, the graphical statechart is a powerful tool for visually illustrating the behavior of a system that
adheres to the protocol. Second, it is possible to interactively exercise the statechart and determine
whether it behaves appropriately in a variety of situations. Third, since statecharts take action
based on events, to which messages exchanged between entities naturally correspond, they are ideal
for modeling communications protocols. The intended audience of this document includes protocol
designers, testers, and implementers. Some specific instructions will only apply for those working
on JPL systems, with the JPL Autocoder.

2 Statecharts for Protocol Design

Statecharts are currently used, both formally and informally, to illustrate system design and be-
havior. A statechart consists of a set of disjoint states, often represented as boxes, and transitions
between the states, often represented as arrows. A transition occurs due to an event, specified as an
annotation to the transition arrow. States may also be associated with entry or exit actions.

2.1 Statechart Example

A simple traffic example is shown in Figure 1. This statechart models the current state of the
intersection in terms of what kinds of traffic flow are permitted: north-south or east-west, with the
“slow” states modeled separately to permit a non-abrupt transition between the two. Transitions
specify how the system moves between these states. The filled circle at the upper left specifies the
start state (NorthSouth Go).

This statechart contains transitions that use both events and timers. The “Car E W” event
indicates that one of the car sensors in the east-west direction registered the presence of a car
waiting. If the system is currently in NorthSouth Go, this event will cause it to transition to
NorthSouth Slow and change the north-south lights from green to yellow. From this state, a timer
event (“at(5)”) specifies that 5 seconds later, the system exits this state, sets the north-south lights
to red, and transitions to EastWest Go, setting the east-west lights to green. From this state, the
system waits until a car is detected by one of the north-south sensors. Note that in this state, if the

2



MagicDraw UML, 1-1 /Users/wkiri/Research/Past/Autocode/Sandbox/RandTD_SMDev/src/stoplight2/Test.xml Test Apr 2, 2008 9:38:12 AM

Direction

NorthSouth_Slow

set_NS_Yellowentry / 

set_NS_Redexit / 

EastWest_Slow

set_EW_Yellowentry / 

set_EW_Redexit / 

NorthSouth_Go

set_NS_Greenentry / 

EastWest_Go

set_EW_Greenentry / 

NorthSouth_YellowNorthSouth_GreenNorthSouth_Red

EastWest_YellowEastWest_GreenEastWest_Red

Car_N_S

at (5)

at (5)

Car_E_W

set_NS_Red

set_NS_Yellowset_NS_Green

set_EW_Red

set_EW_Yellowset_EW_Green

Figure 1: Simple statechart modeling traffic flow control at an intersection. There are four possible
states, corresponding to the directions of permitted traffic flow. The presence of a car at one of the
East-West or North-South sensors causes the system to transition from a “Go” state to a “Slow”
state, and five seconds later, it transitions to the other “Go” state. Entry and exit actions update
the traffic lights.

Car E W event happens, the system does nothing. The system responds only if an event happens
that is associated with an action or transition from the current state.

Figure 2 shows a more complex model of the same system, in which the current state of the
intersection’s traffic lights is also explicitly modeled. Orthogonal regions, separated by horizontal
dashed lines, permit the independent modeling of traffic flow (top), north-south lights (middle), and
east-west lights (bottom). The full system configuration at any time includes one state from each
orthogonal region. The value of explicitly modeling the lights is that the system designer or tester
can see the critical system output (color of the lights) at a glance, and system testing can directly
confirm whether the current light configuration is as expected. As discussed later in this document,
the statechart can be converted into a Promela model for model-checking purposes, which enables
answering critical queries such as “Can the system ever reach a state where it is in NorthSouth Green
and EastWest Green at the same time?”

2.2 Statecharts for Communication Protocols

Statecharts can be put to good use in modeling communication protocols. At the most basic level,
the statechart can track whether the system is in a “send” or “receive” state. Full-duplex, half-
duplex, and simplex communication result in different kinds of transitions between these activities.
Fundamental events may include notification from the application layer that user data is ready to
be sent and notification from the link layer that data has been received. Timer events can be used
to implement delays and timeouts to permit synchronization between communicating units and the
detection of link dropout.

To create a protocol statechart, the first step is to identify

3



MagicDraw UML, 1-1 /Users/wkiri/Research/Past/Autocode/Sandbox/RandTD_SMDev/src/stoplight2/Test.xml Test Apr 2, 2008 9:38:12 AM

Direction

NorthSouth_Slow

set_NS_Yellowentry / 

set_NS_Redexit / 

EastWest_Slow

set_EW_Yellowentry / 

set_EW_Redexit / 

NorthSouth_Go

set_NS_Greenentry / 

EastWest_Go

set_EW_Greenentry / 

NorthSouth_YellowNorthSouth_GreenNorthSouth_Red

EastWest_YellowEastWest_GreenEastWest_Red

Car_N_S

at (5)

at (5)

Car_E_W

set_NS_Red

set_NS_Yellowset_NS_Green

set_EW_Red

set_EW_Yellowset_EW_Green

Figure 2: Statechart illustrating a traffic intersection, with orthogonal regions to represent the
current state of the lights as well. The orthogonal regions are separated by horizontal dashed lines.

1. the discrete system states and

2. the transitions between those states

to be modeled in the statechart. This process requires the identification of the desired level of
abstraction to be represented, anywhere from the simple send/receive two-state model just described
down to the modeling of individual bit transmission on the link. For most purposes, capturing
behavior somewhere between these extremes is appropriate.

Decisions about what to include in the statechart can be guided by considering how the statechart
will be used. For system documentation, all behavior that implementers and customers need to
understand should be included. For automatic code generation, all behavior that needs to be under
statechart control (e.g., automatically updated and checked for consistency each time the statechart
is changed) should be included. For model checking, enough detail must be included so that the
relevant system attributes can be checked. In general, more detail is better, although large diagrams
can become unwieldy or illegible. In such cases, submachines can be used to encapsulate part of the
system in a separate, linked statechart. We will show an example of this shortly in our Proximity-1
statechart.

The specification of entry and exit actions also relates to the decision about abstraction. In
Figures 1 and 2, the actions are simply events which trigger state transitions in other regions. If
connected with hardware that controls the actual lights, this system would also need to specify
actions that update the physical state of the lights. These actions can be specified as function calls,
such as set NS Yellow(). This function call should not be confused with the event set NS Yellow.
Events only affect the internal system state, as specified in the statechart. Interactions with hardware

4



(e.g., via device drivers) must be specified with this kind of function call, which must be implemented
outside of the statechart. With respect to abstraction, low-level behaviors are also best encapsulated
in these external calls.

The statechart itself can be created with any statechart drawing tool. We used MagicDraw1,
which saves out statecharts in a generic, open format (UML). If there is a desire to automatically
generate C or C++ code, to use the interactive test harness, or to generate a Promela model of the
statechart, then it is advisable to use this tool, since the JPL Autocoder (described later) is tailored
to the UML structures it uses.

2.3 Case Study: Proximity-1 Reference Implementation Statecharts

We recently completed a project in which we provided a statechart-based implementation of the
Proximity-1 protocol for use in the JPL Protocol Test Lab. The Proximity-1 protocol (CCSDS,
2006) is currently being used by the Mars Exploration Rovers to communicate with Mars Odyssey
and the Mars Reconnaissance Orbiter. It has been adopted as the standard for future Mars missions
such as the Mars Science Laboratory (MSL), the next rover mission to Mars. We have designed
statecharts to describe the protocol and to provide a reference implementation against which other
systems that adhere to the protocol can be tested. The implementation consists of automatically
generated code that was produced from the statecharts directly by the JPL Autocoder (Benowitz
et al., 2006).

2.3.1 Proximity-1 Statecharts

Working from the Proximity-1 specification, we developed a high-level statechart that consists of
five orthogonal regions (see Figure 3). The first region tracks the current activity of the system as
a whole: it can be one of the Idle, Hailing, DataServices, or CommChange states. The second and
third regions track the current state of the transmitter (Off, Idle, or Transmitting) and receiver (Off,
Idle, or Receiving). The fourth and fifth regions track the current state of the COP-P progressive
retransmission part of the Proximity-1 protocol. FOP-P determines what frame should be sent next:
a new frame, a previously sent but unacknowledged frame, a PLCW (Proximity Link Control Word),
etc. The receipt of an invalid PLCW switches FOP-P into the ActiveTimer state, which transitions
to the Resync state if a valid PLCW is not received before the timer expires. FARM-P determines
what actions should be taken when a frame is received.

The details of the Hailing, DataServices, and CommChange states in the first orthogonal region
(MAC) are contained in submachines, indicated by the chain icon in the lower right corner of these
states. Encapsulating these details in submachines permits the high-level state to remain clear and
uncluttered. The system begins in the Idle state, and when it enters, it performs the action of calling
mac go inactive(). All actions that appear as function calls are hooks into lower-level methods
that are implemented manually. The system transitions to Hailing if it receives a “SetTransmit”
or “SetListen” directive. Each of these transitions is associated with a different entry point to the
submachine. The submachine associated with Hailing is indicated at the top of the state as prox1hail.
There are also two exit points from the submachine; a successful hail exits at “doneHailing” and
transitions to DataServices. If the hail fails, the “failedHailing” exit point permits the system to
transition back to Idle.

When the system is in DataServices, it can actively send and receive data frames as needed. When
there is no more data to send, it exits via “doneData” back to the Idle state. At any time while in
DataServices, a local or remote request to change the communications parameters (frequency, bit

1http://www.magicdraw.com/

5



rate, etc.) may occur and causes the system to switch to the CommChange state. If this succeeds,
the system returns to DataServices, and if it fails, the system drops back to Hailing to regain the
link.

2.3.2 Proximity-1 MAC Submachines

Figure 4 shows the details of the three submachines referenced in the MAC region of the main chart.
The first is the prox1hail submachine, which includes both entry and exit points for the submachine.
As specified by the protocol, the SetListen directive causes the radio to wait for hailing directives
to be received, and the SetTransmit directive instructs the radio to issue hailing directives and wait
for a valid frame to be sent back. If a valid frame is not received within a specified time, then the
system loops from S35 back to S31 and tries again. After too many attempts, the system exits via the
“failedHailing” exit point. A successful hail exits via “doneHailing” and transitions to DataServices.

The prox1data submachine, which is associated with the DataServices state, appears in Fig-
ure 4(b). From the perspective of the MAC, nothing happens while the system is in the SendRecv
state. All of the activity in terms of deciding which frames to send and parsing the frames that
are received takes place in the FOP-P and FARM-P regions, and the actual sending and receiving
of frames happens in the Transmitter and Receiver regions. This statechart only responds when a
local (LNMD) or remote (RNMD) “no more data” directive is received. An LNMD directive causes
the system to wait for pending frames to go out and then send an RNMD to the other radio. It
then waits for an RNMD to come back, which completes the handshake and permits the session
to be terminated. Alternatively, if the system receives an RNMD while in SendRecv, it waits for
a local LNMD to occur before sending the handshake RNMD back. Both paths terminate in the
“doneData” exit point, which transitions the MAC back to Idle.

The prox1commchange submachine in Figure 4(c) provides the details for a local or remote
communications change request. A local request is handled as follows. The radio waits for the queue
of pending frames to empty, then sends a Remote Communications Change Directive (RCCD) to the
other radio. Once its FIFO queue empties, the radio waits for the communications link to be lost
(modeled as a “BitLockFalse” event), indicating that the other radio has changed its parameters. If
this does not happen before a specified amount of time, the radio loops back to WaitForEmpty and
re-sends the RCCD. As in the hailing submachine, after too many tries the system will give up and
exit through the “failedCommChange” exit point. If “BitLockFalse” occurs, the radio updates its
local receive parameters, waits for a valid frame to be received from the other radio, and then updates
its own transmit parameters. At that point, the two radios can resume regular communications by
exiting through “doneCommChange” back to DataServices.

A remote request, received on the link by the local radio, is handled as follows. The radio waits
for its local FIFO queue to empty, pauses, and then updates its transmit and receive parameters. It
transitions to RadiateCarrier and then RadiateAcqIdle to permit the remote requestor to receive a
valid frame and update its own parameters, and the two radios can then resume their session.

3 Automatic Code Generation

Using established coding templates, statechart models can be automatically mapped into code by
means of a statechart Autocoder tool. Rather than treating statecharts as just part of the design
documentation, they can be maintained along with the source code, subject to the same level of
scrutiny and review.

6



Figure 3: Proximity-1 statechart, consisting of five orthogonal regions. From the top, they are: the
MAC region (state of the Medium Access control layer), transmitter, receiver, FOP-P (sender logic),
and FARM-P (receiver logic).

7



(a) Hailing (b) Data Exchange

(c) Communications Change

Figure 4: Proximity-1 statechart submachines.

8



3.1 Background and History

The first JPL mission to use auto-coding with statecharts was Deep Space 1 (1998–2001), a mis-
sion designed to demonstrate advanced technology such as ion propulsion, autonomous navigation,
onboard reactive planning, and others (Rouquette et al., 1999). Matlab’s Stateflow tool2 was used
to design and generate code for the fault protection subsystem. Stateflow was also used to generate
fault protection code for Deep Impact, which studied the results of an artificial impactor striking
comet Tempel 1 in 2005 (Barltrop et al., 2002).

After evaluating these experiences, JPL decided to implement its own lightweight model-based
code generation tool to provide the following advances over Stateflow: 1) a non-proprietary file
format in which the statecharts are stored, 2) precise control over which programming constructs
are used, to ensure adherence with flight software requirements, and 3) the ability to plug in different
front-end statechart drawing tools and different back-end output modules. For example, each mission
can impose its own coding standards that should be applied in the code being generated. As noted
below, the code generator can also output other forms of code, such as a model representation that
can be used by a model-checking tool. The resulting JPL Autocoder was used to model and generate
code for the fault protection subsystem of the Space Interferometry Mission (SIM) (Marr, 2003) and
the Proximity-1 protocol, as discussed above.

3.2 The JPL Autocoder

The JPL Autocoder (Benowitz et al., 2006) takes in statecharts encoded in UML files and can
produce C or C++ code. Development on the Autocoder began in 2004, and the Autocoder itself
is currently classified as NASA Class B (mission critical) code. Statechart features supported by
the Autocoder include: initial states, composite states, events, actions, signals, guards, junctions,
orthogonal regions, submachines, and deep history states. The Autocoder expects as input UML
consistent with that produced by the MagicDraw visual UML modeling tool.

The generated C/C++ code uses the standard statechart translations provided by the Quantum
Framework (Samek, 2002b). Each state is represented as a method that takes the triggering event
in as an input parameter. The body of the method is a switch statement that, based on the event,
dictates the resulting behavior (execute an action, transition to another state, etc.). The Autocoder
generates code for all components of the statechart as well as inserting calls to external methods
that implement low-level actions.

3.3 How to Use it

After creating a statechart using MagicDraw and saving it out as a .xml file, you can generate C or
C++ code using the Autocoder as follows. Note: This applies only from inside JPL.

1. Download the latest JPL Autocoder package from this website:
http://alab.jpl.nasa.gov/mbe/pages/download.html
It is currently available for Linux and Windows systems.

2. Compile the system using the instructions here:
http://alab/mbe/pages/RunningATest.html
There are also instructions for running the test state chart provided.

3. Make a copy of src/test harness-C. Replace Test.xml with your .xml file. Modify the
Makefile to refer to your statechart and do make clean; make all.

2http://www.mathworks.com/products/stateflow/

9



Table 1: Semantic lines of code manually and automatically generated for the Proximity-1 reference
implementation, calculated with the SLiC version 2.0 tool.

Component Lines of Code
UML Statechart 2049 (C)

674 (Python)
Proximity-1 implementation 674 (C)

QP API 198 (C)

The Autocoder will create several .o files in the linux/ subdirectory as well as the executable,
linux/active (the names can be modified in the Makefile to fit your application). Running this
executable will start up a copy of your statechart. To send events to it, you can either write your
own interface and link it into the object files, or use the interactive test harness, which is described
in the next section.

3.4 Case Study: Proximity-1 Reference Implementation Code Genera-
tion

We used the JPL Autocoder to generate C code as the basis for a reference implementation of
Proximity-1. We provided the statecharts described in Section 2.3 as input. The first row of
Table 1 shows the lines of code automatically generated by the JPL autocoder. The generated C
code provides the implementation for the statechart, and the generated Python code provides the
interactive test harness framework.

The same table reports the additional code that had to be written manually to complete a full ref-
erence implementation. The automatically generated code defines the states, transitions, timers, and
all other system details captured by the statechart. Additional code must be written to implement
each of the low-level functions defined as actions (indicated with function calls) within the state-
charts. Finally, additional code must be written manually to connect the statechart implementation
with the Quantum Platform (QP) framework (Samek, 2002b), which provides the infrastructure
needed to run the state machines, dispatch events, track timers, and so on. However, once these
manual components are written, the statechart can be modified and the C code regenerated without
re-writing the manual functions, unless different behavior is needed at the low level. Overall, we
see that the autogenerated C code amounts to 2.3x the amount of manually written code. In other
terms, the autogenerated code constituted 70% of the code needed for the reference implementation.

4 Interactive Statechart Testing

The JPL Autocoder can also produce a Python graphical interface to the generated code using the
Tkinter package, which is built on Tcl/Tk. The entire model can then be executed in simulation,
with an interactive interface in which the user clicks on buttons to send events to the state machine.
The developer can conduct a series of behavioral tests to confirm that the model, and the generated
code, respond as expected and that they match the specification. In this way, many design errors
can be caught and corrected prior to integration with a larger code base or conducting hardware
tests.

10



4.1 How to Use it

To run the test harness, first follow the compilation process described above. Then run ./setup.py.
This will create several new windows:

• Light brown: DMS window. If it is not running, type ./dms.py in this window.

• Blue: GUI window. If it is not running, type ./gui.py to start up the GUI, which will pop
up two Tk windows: one with the state machine shown in simulation and one with the list of
signals (events) that you can send to the state machine.

• Black: Application window. Type linux/active to start running the executable. This should
also cause the GUI Tk window to highlight the start state in green, indicating that the state
machine is now running.

• Brown: DMS terminal. Type python -i ./dmsterminal.py to start up the interactive ter-
minal for controlling the state machine.

At this point, you can click on signal buttons to send that event to the state machine and observe
how it responds. You can also run scripts through the DMS terminal to automate the process of
interacting with the state machine (for example, to perform regression tests). At any time, click the
“Shutdown” button to cleanly exit the test harness.

4.2 Case Study: Proximity-1 Reference Implementation Statechart Test-
ing

Our experience in the process of developing the Proximity-1 reference implementation has been
that the graphical test harness allowed us to spot several bugs much earlier than if we’d waited for
later downstream testing to catch them. In one example, the log output of all of the state machine
transitions showed that after the no-more-data handshake completed, the system correctly returned
to the Idle state. However, when we viewed the process graphically, it became immediately obvious
that the other four orthogonal regions had not returned to their Idle states. We had forgotten to
specify the generation of the TurnOffTX, TurnOffRX, and COPPOff events as part of the return
to Idle in the MAC region. This was an easy fix, and correct behavior was immediately confirmed,
again with the interactive test harness. The test harness is invaluable for exactly this kind of testing,
and the fact that you can instantiate multiple copies of the same machine permits testing a variety
of network configurations to stress-test any protocol.

5 Statechart Model Verification with SPIN

The JPL Autocoder can also produce a Promela (Process or Protocol Meta Language) representation
of the statechart for use with automated verification tools. Promela is the language used to represent
models that can be checked by the SPIN tool (Holzmann, 2003). SPIN was designed to detect
software defects in concurrent system designs, which is ideal for complex statecharts with concurrent
regions. SPIN can also perform reachability and other useful analyses of the model. One of the
barriers preventing more widespread use of model verification tools such as SPIN is the large amount
of manual effort that must be invested to create an accurate model of the system and re-invested each
time the system is modified or updated. The Autocoder greatly reduces this burden by automatically
providing an up-to-date Promela model each time the statechart changes and code generation is
performed.

11



5.1 How to Use it

The model verification process is described in detail by Garth Watney in a report titled “Building
Verification Models from UML Statecharts: Design and Users Guide Version 2.1”, which is available
at http://alab.jpl.nasa.gov/mbe/pages/Documentation.html. It includes the simple traffic
light statechart as an example and demonstrates how to check whether it can ever reach a state
where the lights in both directions are green at the same time.

6 Summary

In this document, we have described the process of using model-based design to develop a statechart
representation of a software system, particularly with an eye towards communications protocol
development. The JPL tools available for this work include MagicDraw, for designing the statechart
and writing it out in UML format, and the JPL Autocoder, for converting the statechart to C or
C++ code, a Python test harness representation, and/or a Promela model for later model checking.
Our description of this process includes a case study in which we created a reference implementation
of the Proximity-1 protocol using statecharts and automatic code generation. We found that most
(70%) of the code necessary for the reference implementation could be automatically generated. The
effort involved in generating that code was instead devoted to designing and testing the statechart
itself. We see this process as freeing the protocol designer to focus on high-level (protocol-level)
behavior before needing to delve into low-level bit transfer and link-level details.

Acknowledgments

We thank Ken Clark, Garth Watney, and Eddie Benowitz for their initial work on the JPL Au-
tocoder that made this kind of development possible. Garth and Eddie also helped greatly with
our initial work with statecharts and Proximity-1, specifically on the Hailing and CommChange
submachines. Garth has invested a lot of effort in packaging the Autocoder and providing tutorials
and documentation to make it more usable by a wider audience.

We also thank Peter Shames for his support of this work, in terms of finances and enthusiasm, and
Greg Kazz for providing his time and Proximity-1 expertise. We thank Leigh Torgerson, Jackson
Pang, and John Veregge at the JPL Protocol Test Lab for their assistance and support of the
reference implementation.

The research described in this paper was carried out at the Jet Propulsion Laboratory, California
Institute of Technology, under a contract with the National Aeronautics and Space Administration.

References

Barltrop, K., Kan, E., Levison, J., Schira, C., & Epstein, K. (2002). Deep Impact: ACS fault
tolerance in a comet critical encounter. Advances in the Astronautical Sciences, 111, 111–126.

Benowitz, E., Clark, K., & Watney, G. (2006). Auto-coding UML statecharts for flight software. Pro-
ceedings of the 2nd IEEE International Conference on Space Mission Challenges for Information
Technology (SMC-IT).

CCSDS (2006). Proximity-1 spacelink protocol: Data link layer (Technical Report 211.0-B-4). Con-
sultative Committee for Space Data Systems (CCSDS).

12



Holzmann, G. (2003). The SPIN Model Checker. Addison-Wesley.

Marr, J. C. (2003). Space Interferometry Mission (SIM): Overview and current status. Proceedings
of the SPIE (pp. 1–15).

Rouquette, N. F., Neilson, T., & Chen, G. (1999). The 13th technology of Deep Space One. Pro-
ceedings of the 1999 IEEE Aerospace Conference (pp. 477–487).

Samek, M. (2002a). Practical Statecharts in C/C++. CMP Books.

Samek, M. (2002b). Practical statecharts in C/C++: Quantum programming for embedded systems.
CMP Books.

13


