Private pilot's license (airplane single-engine land), 2016
My background is in Computer Science, Planetary Science, and
Geology. I am most interested in problems that lie at the interfaces
between these fields, such as automated methods (artificial
intelligence, machine learning) to investigate science questions using
planetary data (orbital and in situ).
I work at the Jet
Propulsion Laboratory in Pasadena, CA, as a researcher in the
Machine Learning and Instrument
Autonomy Group, investigating ways that machine learning can be
used to increase the autonomy of space missions.
From 2013 to 2017, I also served as a
tactical planner and uplink lead for the
Mars Exploration Rover Opportunity. Since 2018, I have also served
as the PDS Imaging Node
Technologist.
I am also an Associate Research Professor at Oregon State University,
where I have the pleasure of
teaching classes in Computer Science and doing research on competency-aware machine learning.
My research projects at JPL have included:
- Onboard science for Europa Clipper: Developing and testing methods
to quickly analyze data as it is collected during a flyby of Europa to
assign high downlink priorities to the most scientifically valuable
observations and to enable cross-instrument collaboration
- Mars Target Encyclopedia: Information extraction from scientific
publications for planetary science
- V-FASTR: Efficient machine learning to detect transient radio phenomena (e.g., pulsars and Fast Radio Bursts) in real time
- Collaborative machine learning for sensor networks
- Automatic landmark identification and change detection in Mars orbital images (dark slope streaks, dust devil tracks, etc.)
- Analyzing the sensitivity of machine learning algorithms to high-radiation environments
- Predicting county-level crop yield from Earth orbital images
- Modeling user preferences for sets, rather than individual items
(like music playlists or rover image downlink sets)
- Modeling flight software with state charts and using automatic code generation to convert them into C/C++ (for implementation) or Promela (for model checking)
- Tracking the north polar ice caps (water and CO2) on Mars
News and upcoming events:
- Press release (Oct. 1, 2020):
AI Is Helping Scientists Discover Fresh Craters on Mars
- The video for my controversial ICML 2012 talk is no longer available (lost in a server crash).
However, you can read the original paper:
Machine Learning that Matters (pdf, 6 pages, 234K) and
see the slides from a subsequent invited AAAI talk:
Challenges for Machine Learning Impact on the Real World (1.6M).
- Recently published or posted:
-
Mars Image Content Classification: Three Years of NASA
Deployment and Recent Advances
(IAAI Deployed Application Award).
Kiri Wagstaff, Steven Lu, Emily Dunkel, Kevin Grimes,
Brandon Zhao, Jesse Cai, Shoshanna B. Cole, Gary Doran,
Raymond Francis, Jake Lee, and Lukas Mandrake.
Proceedings of the Thirty-Third Annual Conference on
Innovative Applications of Artificial Intelligence, 2021.
- We report on updates to Mars image classifiers deployed
at the NASA Planetary Data System, for orbital and rover images,
and lessons learned that inform ongoing activities to build
new classifiers for additional missions.
- All publications